
CSE599s: Extremal Combinatorics December 5, 2011

Lecture 19 Expander Graphs (continued)

Lecturer: Anup Rao

Last time we introduced expander graphs, and saw how to obtain error correcting codes from them.
This time we shall continue our tour of expander graphs and their applications.

Loosely speaking, an expander graph is an undirected graph on n vertices where every vertex
has degree d (a small constant), and yet every (small enough) set S has Ω(d|S|) neighbors. Recall
that the neighbors are usually denoted Γ(S). Although it took a significant amount of effort, today
we know of several constructions of expander graphs with very good parameters.

One can also define expanders using the spectrum of the adjacency matrix. Suppose the adja-
cency matrix is A:

Ai,j =

{
1 if {i, j} is an edge,
0 otherwise.

The normalized adjacency matrix is B = A/d. B has a natural interpretation: it is the transition
matrix for the stochastic process of taking a random step on the graph. In other words, if x is a
column vector that corresponds to a probability distribution on the vertices (so that

∑
i xi = 1 and

xi ≥ 0), then Bx is the vector that is the distribution obtained by first sampling a vertex according
to x and then picking a uniformly random neighbor of that vertex. Similarly, Bk is the matrix that
corresponds to taking k random steps in the graph. Here are some other properties of B:

• B has exactly n real eigenvalues (possibly repeated): λ1 ≥ λ2 ≥ . . . ≥ λn.

• The corresponding eigenvectors form an orthonormal basis.

• λ1 = 1, and the first eigenvector is the vector that takes value (1/
√
n) everywhere.

• λ1 > λ2 if and only if the graph is connected.

• λ1 = −λn if and only if the graph is bipartite.

In the last lecture, we were mostly concerned with the vertex expansion of the graph. Today
we define the edge expansion of the graph:

h(G) = min
S,|S|≤n/2

edges coming out of S
|S|

Then one can show that edge expansion is closely tied to the value of λ2:

Theorem 1.

d

(
1− λ2

2

)
≤ h(G) ≤ d

√
2(1− λ2)

Thus, a good expander will have a constant eigenvalue gap (1− λ2) = Ω(1).

19 Expander Graphs (continued)-1

1 Some Useful Properties of Expanders

1.1 Random Walks on Expanders Converge to Uniform

Suppose we start with an arbitrary distribution p on vertices. Then we can write p in the basis of
eigenvectors of B as p = α1v1 +α2v2 + . . .+αnvn. Since p is a probability distribution (

∑
i pi = 1),

we must have that α1v1 is simply the vector u for the uniform distribution. Thus, we get that
p− u =

∑n
i=2 αivi, and B(p− u) = Bp− u =

∑n
i=2 λiαivi. Thus:

∥∥∥Bkp− u
∥∥∥ ≤ ∥∥∥∥∥

n∑
i=2

λk
i αivi

∥∥∥∥∥ =

√√√√ n∑
i=2

λ2k
i α

2
i ≤ λ

k
2

√√√√ n∑
i=2

α2
i ≤ λ

k
2

√
n,

so the distribution rapidly converges to the uniform distribution, in O(log n) steps.
Another very useful property of expanders is the following theorem (whose proof we do not

discuss here). Let λ = max{|λ2|, |λn|}.

Theorem 2. Let f1, f2, . . . , ft : [n]→ [0, 1] be a sequence of functions defined on the vertex set of
an expander graph, each with mean E[f(v)] = µ. Let X1, . . . , Xt be the vertices of a random walk
starting at a uniformly random vertex in the graph. Then

Pr

[∣∣∣∣∣
t∑

i=1

fi(Xi)− µt

∣∣∣∣∣ ≥ εt
]
< 2e−

ε2(1−λ)t
4 .

1.2 Expander Mixing Lemma

The expander mixing lemma says that in a good expander graph, the number of edges between
any two sets S, T is about what you would expect for a random graph of that edge density. Let
λ = max{|λ2|, |λn|}, then we have

Lemma 3 (Expander Mixing Lemma). Let E(S, T) denote the number of edges from the set S to
the set T . Then ∣∣∣∣E(S, T)− d|S||T |

n

∣∣∣∣ ≤ λd√|S||T |
Proof Recall that the eigenvalues of A are d ≥ dλ2 ≥ . . . ≥ dλn. Let 1S , 1T be the (column)
indicator vectors for S, T . Then E(S, T) = 1t

S ·A·1T . We can write each of them in the orthonormal
basis of the eigenvectors of A as 1S =

∑
i αivi and 1T =

∑
i βivi. Then E(S, T) = d

∑
i λiαiβi.

Note that α1 = |S|/
√
n and β1 = |T |/

√
n. Thus, the top term is d|S||T |/n, and we get∣∣∣∣E(S, T)− d|S||T |

n

∣∣∣∣ ≤ λd n∑
i=2

|αiβi| ≤ λd‖1S‖‖1T ‖ ≤ λd
√
|S||T |,

where the last inequality follows from the Cauchy-Schwartz inequality.

In fact, one can prove a converse (but we do not go into the proof here):

Lemma 4. Suppose ∣∣∣∣E(S, T)− d|S||T |
n

∣∣∣∣ ≤ ρ√|S||T |,
then λ ≤ O(ρ(1 + log(d/ρ))), and the bound is tight.

19 Expander Graphs (continued)-2

2 Some Explicit Constructions

To give an idea of exactly how explicit expander constructions can be, we give a couple of them
here:

2.1 Margulis’s Construction

The vertex set is Zm×Zm, where Zm denotes the integers mod m. The edges of a vertex (x, y) are
(x, x+ y), (x+ y, y), (x− y, y), (x, y − x), (x+ y + 1, y), (x− y + 1, y), (x, y + x+ 1), (x, y − x+ 1).

2.2 A Degree 3 Expander

The vertex set is Zp for a prime number p. x is connected to (x+ 1), (x− 1) and the multiplicative
inverse x−1, with the inverse of 0 being 0.

3 Randomness Efficient Error Reduction

Recall that a randomized algorithm A that computes a function f is in randomized polynomial
time with one sided error if for every input x, the algorithm uses n uniformly random bits r to
compute a value A(x, r) such that Prr[A(x, r) = f(x)] ≥ 2/3. We are interested in increasing the
probability that the algorithm is correct. One idea is to use the Chernoff bound. We can simply
run the algorithm t times on the input x, using completely independent randomness r1, . . . , rt, and
take the majority (or plurality) outcome. By the Chernoff bound, the probability that the majority
is incorrect is at most 2−Ω(t). However, this requires us to use nt random bits.

A better idea is to use Theorem 2: We sample a random walk of length n on the vertex set of
an expander graph defined on 2n vertices. Each vertex gives us a random string ri, and as before,
we output the majority outcome of running the algorithm using each of these random strings. By
Theorem 2, the probability of computing the wrong value is at most ε = 2−Ω(t). However, now we
only need to invest n+O(t) random bits in order to achieve this low probability of failure!

Indeed, we can get rid of the additional randomness entirely if t = O(log n). To do this, let
us call a vertex v bad if at least

√
ε of the random walks of length t that begin at v lead to the

algorithm computing the wrong value. Then at most
√
ε of all vertices can be bad, since the total

fraction of bad random walks is at most ε. Thus, we can simply sample a random vertex v, and
run over all possible random walks that start at v, and output the majority outcome from all those
walks. The number of such walks is at most 2O(t) = poly(n) which is a polynomial in the running
time of the original algorithm, so it is not too large. In this way, we obtain an algorithm that uses
only n random bits, but whose probability of failure is at most 2−Ω(t).

4 Monotone Formulas for Majority, and Sorting

Question: What is the minimum depth of a monotone boolean circuit that computes the majority
of n bits?

One can give a non-monotone circuit of depthO(log n) that computes the majority by computing
the number of 1’s in the output. However that circuit will use negations.

One way to compute the majority of n bits is to give a comparator circuit that sorts n numbers.
A comparator circuit is a circuit where all gates take two inputs and have two outputs. The outputs

19 Expander Graphs (continued)-3

are the inputs in sorted order. Ajtai, Komlos and Szemeredi found a comparator circuit of depth
O(log n) for sorting n numbers. Note that when the inputs are bits, a comparator gate can be
implemented using an OR gate and an AND gate. The dn/2e bit of the output is the majority of
the inputs.

A basic primitive in their construction is a constant depth circuit called an ε-halver that can
take n inputs and output n numbers such that (except for εn errors) the first n/2 of the numbers
are the lowest n/2, and the second n/2 are the highest. If we could do this exactly, then we could
recursively repeat the construction (by sorting the left half and the right half separately) to obtain
a circuit of O(log n) depth that sorted all the numbers. Now think of the complete bipartite graph
with n/2 vertices on each side as a union of n/2 perfect matchings. We can obtain a comparator
network that is a 0-halver of depth n/2, by running the comparisons that correspond to each
matching in each step. If we do this, we can see that a number that is larger than the median
can never end up on the right. Ajtai, Komlos and Szemeredi make progress by using a bipartite
expander that is the union of a constant number of matchings to get a constant depth circuit. The
expander has the property that for every set of size εn on the left and every set of size εn on the
right, there is an edge between the two sets. This implies that the number of elements that end up
in the wrong half is at most 2εn.

To actually get this idea to work is quite involved. It remains open to give a simple comparator
circuit.

4.1 Valiant’s Randomized Circuit Construction for Majority

Now we give a randomized construction of a O(log n) depth monotone circuit for majority. Note
that only the construction is randomized! At the end we will show how to generate a circuit of
depth O(log n) that computes the majority of any input with probability 1.

The construction is based on some simple observations about the majority of independent
random bits:

Claim 5. Suppose X,Y, Z are independent identically distributed bits, such that each one is equal
to b ∈ {0, 1} with probability 1/2 + ε, where here ε < 1/4. Then the majority of these bits is equal
to b with probability at least 1/2 + (5/4)ε.

Proof The probability that the majority is 1 is exactly

3(1/2 + ε)2(1/2− ε) + (1/2 + ε)3

= 3(1/4 + ε+ ε2)(1/2− ε) + (1/8 + 3ε/4 + 3ε2/2 + ε3)

= 1/2 + ε(3/2− 3/4 + 3/4) + ε2(3/2− 3 + 3/2) + ε3(1− 3)

≥ 1/2 + 3ε/2− 2ε3 ≥ 1/2 + (3/2− 1/8)ε ≥ 1/2 + 5ε/4

On the other hand, we have

Claim 6. Suppose X,Y, Z are independent identically distributed bits, such that each one is equal
to b ∈ {0, 1} with probability 1− ε, where here ε < 1/100. Then the majority of these bits is equal
to b with probability at least 1− ε3/2.

19 Expander Graphs (continued)-4

Proof The probability that the majority is not b is at most 3ε2 + ε3 < ε3/2 for ε < 1/100.

Finally, by the Chernoff bound, if we have bits X1, . . . , Xc that are each b with probability
1/2 + 1/5, then for a large enough constant c, we have that the majority is equal to b with
probability at least 1− 1/1000.

The final randomized construction is as follows. We build a tree of majority gates of depth
d1 + d2. Every gate at depth d2 computes the majority of c inputs. Every other gate computes
the majority of 3 inputs. At the bottom, we feed in completely random inputs into the tree: in
other words, the input to each majority gate at depth 1 is a uniformly random input variable. Each
majority gate can eventually be replaced with a monotone circuit of constant size (and depth).

We set d2 = Θ(log n) to be large enough so that (5/4)d2 ≥ n, and d1 to be large enough so
that (1/100)(3/2)d1 ≤ (1/2)2n. Then for any fixed input, each input gate gets independent bits that
are biased towards the majority with bias 1/n. Thus, after depth d1, the bias is greater than 1/5.
The majority gates in the d2 layer then ensure that their outputs are equal to the majority with
probability 1 − 1/1000. The final layer of d1 gates then ensures that the output of the circuit is
equal to the majority except with probability 2−2n. By the union bound, the probability that the
circuit is incorrect on any one input is at most 2−n, so there is some fixing of the randomness used
that makes the circuit correct on all inputs!

19 Expander Graphs (continued)-5

