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1 Sets with Small Pairwise Intersection

Suppose we want a family of sets F ⊆ 2[n] such that every set in the family is of size exactly r, and
every pair of sets has an intersection of size k. How many such sets can we have?

This question has found a very beautiful application in computer science. It was used in the
construction of the Nisan Wigderson pseudorandom generator, and is a crucial component used in
the proof of the following theorem:

Theorem 1. One of the following statements must hold:

• Every language that can be computed in time 2O(r) (here r is the input length) can be computed
by a boolean circuit family with circuits of size 2o(r).

• Every randomized polynomial time algorithm has a deterministic polynomial time simulation
(i.e. P = BPP ).

Just to give you an idea of how the proof will go, suppose f is a boolean function that violates
the first condition, and let F = {S1, . . . , St}. Then given n random bits x1, . . . , xn, we will generate
t “pseudorandom bits” f(xS1), f(xS2), . . . , f(xSt) by evaluating f on each of the projections of the
bits to the r coordinates of Si. The fact that the pairwise intersections of the sets is small will be
used to show that no circuit can distinguish the future bits from the past bits (this step is not at
all trivial).

These results are based on showing that for every constant c, there is such a family F of size
|F| = 2n1/2c

, with sets of size r =
√
n whose pairwise intersection is at most k = n1/2c.

We shall discuss this proof in detail later in the course. For now, we shall prove a simple upper
bound on the size of the family.

Lemma 2 (Corradi). If r2 > kn, |F| ≤ rn−kn
r2−kn

.

Proof For every set S in the family, we have∑
x∈S

d(x) =
∑
T∈F
|S ∩ T | ≤ r + (|F| − 1)k.

So this bound holds even for the average set S, i.e.:

r + (|F| − 1)k ≥ (1/|F|)
∑

S∈F ,x∈S

d(x).
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Suppose the family was nice in that every d(x) took the average value, i.e. d(x) = |F|r/n. Then
we would get

r + (|F| − 1)k ≥ (1/|F|)
∑

S∈F ,x∈S

|F|r/n = |F|r2/n

⇒ |F|(r2 − kn) ≤ rn− kn

⇒ |F| ≤ rn− kn
r2 − kn

,

where we used the fact that r2 > kn in the last step.
To complete the proof, we show that the equal degree case is the worst case.

∑
S∈F ,x∈S

d(x) =
∑
x∈[n]

d(x)2 = n
∑
x∈[n]

d(x)2/n ≤ n

∑
x∈[n]

d(x)/n

2

= n|F|2r2/n2 = |F|2r2/n.

2 The Inclusion Exclusion Principle

Given two sets A,B, we have that |A∪B| = |A|+ |B| − |A∩B|. Suppose we are given a family of
sets {A1, . . . , An}. Can we estimate the size of their union in terms of their intersection sizes?

For every non-empty subset I ⊆ [n], define AI =
⋂

i∈I Ai.
Then we can estimate |

⋃n
i=1Ai| by

∑n
i=1 |Ai| but we would have over counted elements that

appear in multiple sets. We can subtract
∑

I⊆([n]
2 ) |AI | but then we would have undercounted

elements that appear in 3 sets.

Proposition 3 (Inclusion Exclusion). |
⋃n

i=1Ai| =
∑
∅6=I⊆[n](−1)|I|+1|AI |

Proof Consider each element x which is in the union of all the sets. Let J = {i : x ∈ Ai}. Then
x contributes to a term in above sum exactly when x ∈ AI , which means that I ⊆ J . Thus, the
total contribution of x is∑

∅6=I⊆J

(−1)|I|+1 = 1 +
∑
I⊆J

(−1)|I| = 1− (1− 1)|J | = 1.

If we adopt the convention that A∅ is the set of all elements in the universe, then the above
argument shows:

Proposition 4. The number of elements not in any of the sets is
∑

I⊆[n](−1)|I||AI |.
Proof If the universe is of size t, then∑

I⊆[n]

(−1)|I||AI | = t−
∑
∅6=I⊆[n]

(−1)|I|+1|AI | = t− |
n⋃

i=1

Ai|.

Next, let us see some applications of inclusion-exclusion.
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2.1 Counting derangements

Question: How many permutations π of [n] are there such that for each j ∈ [n], π(j) 6= j?

Define Aj to be the set of permutations where j is mapped to j. So |AI | = (n− |I|)!.
Then the set of permutations that do not fix a point is just

∑
I⊆[n]

(−1)|I||AI | =
n∑

i=0

(−1)i

(
n

i

)
(n− i)! = n!

n∑
i=0

(−1)i

i!

2.2 Euler’s Totient function

Question : Given a positive integer N , with prime factorization pe1
1 p

e2
2 · · · p

et
t , how many numbers

from 1 to N are relatively prime to N?

Let Ai denote the set of numbers that are divisible by pi. Then |AI | = NQ
j∈I pj

. So the number
of relatively prime numbers is

∑
I⊆[t]

(−1)|I||AI | =
∑
I⊆[t]

(−1)|I|
N∏

j∈I pj
= N

t∏
i=1

(1− 1/pi)
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