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1 More examples of Inclusion-Exclusion

Suppose we are given a family of sets {A1, . . . , An}. Can we estimate the size of their union in
terms of their intersection sizes? For every non-empty subset I ⊆ [n], define AI =

⋂
i∈I Ai, with

the convention that A∅ is the set of all elements in the universe.
Last time we showed:

Proposition 1. The number of elements not in any of the sets is
∑

I⊆[n](−1)|I||AI |.

Proof If the universe is of size t, then

∑
I⊆[n]

(−1)|I||AI | = t−
∑
∅6=I⊆[n]

(−1)|I|+1|AI | = t− |
n⋃
i=1

Ai|.

1.1 Counting Surjections

Question: How many onto functions are there from [m] to [n]?

There are nm functions in total. Let Ai denote the set of functions that do not map anything
to i. Then |AI | = (n− |I|)m. The number of functions that are not in any of these Ai (and hence
are onto) is

∑
I⊆[n]

(−1)|I||AI | =
n∑
i=0

(−1)i
(
n

i

)
(n− i)m

1.2 Computing the Permanent

Given an n× n boolean matrix M (i.e. a matrix with 0 or 1 entries), its permanent is

perm(M) =
∑
π∈Sn

n∏
i=1

Mi,π(i).

The naive way to compute the permanent is just by computing each term, which would take n! · n
arithmetic operations. Note that computing the permanent is #P -complete, which means that if
one can compute the permanent quickly, then we would be able to count the number of satisfying
inputs to a circuit quickly or solve SAT.
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A faster way to compute the permanent is via Ryser’s formula:

perm(M) = (−1)n
∑
I⊆[n]

(−1)|I|
n∏
i=1

n∑
j∈I

Mi,j

This takes time n22n.
Given the matrix M , define the family of functions S = {f : [n] → [n]|∀i,Mi,f(i) = 1}. The

permanent counts the number of these that are permutations!
So let us define the set Ai ⊆ S to be the set of all functions in S that do not map onto i.

Then we are interested in exactly the number of functions that avoid all the Ai’s (and hence are
permutations). |AI | is exactly the number of functions in S that avoid mapping into I and yet
pick out the 1 entries of M . For each i, such a function can take exactly

∑
j /∈I Mi,j values, so

|AI | =
∏n
i=1

∑
j /∈I Mi,j .

By inclusion-exclusion, we have that

∑
I⊆[n]

(−1)|I||AI | =
∑
I⊆[n]

(−1)|I|
n∏
i=1

∑
j /∈I

Mi,j =
∑
I⊆[n]

(−1)n−|I|
n∏
i=1

n∑
j∈I

Mi,j = (−1)n
∑
I⊆[n]

(−1)|I|
n∏
i=1

∑
j∈I

Mi,j

as required.

2 What do the first k terms of the sum say?

The Bonferroni inequalities say that the partial sums alternate between being above the target and
below the target:

Lemma 2. For any even number 2k,

2k∑
j=1

∑
I⊆[n],|I|=j

|AI | ≤ |
n⋃
i=1

Ai| ≤
2k+1∑
j=1

∑
I⊆[n],|I|=j

|AI |

For the proof, we again count the contribution of a particular element x. If x occurs t times,
then the sets of size t are enough to estimate the contribution of x to the union. If we are only
going up to sets of size 2k < t, then the contribution of x is 1−

∑2k
j=1(−1)j

(
t
j

)
.

We have the following simple lemma:

Lemma 3. Suppose a0, . . . , at is a sequence of numbers such that
∑

j(−1)jaj = 0 and the ai’s are

increasing until as and decreasing after, then for any odd k,
∑k

j=1(−1)jaj is negative, and it is
positive for even k.

The proof is easiest when one draws a picture. Lemma 3 easily gives Lemma 2.
In general, the values of the terms in the sum upto size k are not enough to estimate the size of

the union. However, Linial and Nisan proved that once you get to the size of intersections of size√
n sets, then that information is enough to give good estimates on the size of the union:

Theorem 4. Let A1, . . . , An and B1, . . . , Bn be two collections of sets such that for all I ⊂ [n], |I| <
k, |AI | = |BI |. Then,
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1. For k ≥ Ω(
√
n),

|
⋃n
i=1Ai|

|
⋃n
i=1Bi|

= 1 + O(e−2k/
√
n).

2. For k ≤ O(
√
n),

|
⋃n
i=1Ai|

|
⋃n
i=1Bi|

= O(n/k2).

3 The Pigeonhole Principle

The principle: n pigeons cannot fit in n− 1 holes.

Here are some clever applications.

Proposition 5. Every graph must have two vertices of the same degree.

Proof If the graph has n vertices, then the degree of every vertex x satisfies 0 ≤ d(x) ≤ n − 1.
Let T = {d(x) : x is a vertex } be the set of degrees of the graph. If |T | < n − 1, we are done by
the pigeonhole principle. Otherwise, some vertex must have degree 0 and some other vertex must
have degree n− 1. That is impossible!

3.1 Erdős-Szekeres and Dilworth Theorems

Let a1, a2, . . . , an be a sequence of numbers. A subsequence ai1 , ai2 , . . . , ait is a sequence such that
i1 < i2 < · · · < it. We say that the subsequence is increasing if ai1 ≤ ai2 ≤ · · · ≤ ait and decreasing
if ai1 ≥ ai2 ≥ ait .

Theorem 6 (Erdős-Szekeres). If n > rs, then there is either an increasing subsequence of length
r + 1 or a decreasing subsequence of length s + 1.

Proof Suppose not. For each i ∈ [n], let xi be the length of the longest increasing subsequence
that ends at ai, and yi be the length of the longest decreasing subsequence that starts at ai. Since
there is no increasing subsequence of length r + 1, xi ∈ [r] for every i. Similarly, yi ∈ [s] for all
i. Thus the number of such tuples (xi, yi) is at most rs. By the pigeonhole principle, there must
be i < j such that xi = xj , yi = yj . If ai ≤ aj , this is impossible, since we can extend the longest
increasing subsequence that ends at ai by aj to get a longer one. If ai ≤ aj , this is again impossible
since we can extend the longest decreasing sequence that starts at aj by prefixing ai to it.

A partial order on a set S is a subset of S × S. We write x < y to indicate that (x, y) is in the
partial order. We require that x < y and y < z implies that x < z. A useful example to keep in
mind is partial order on 2[n] where I < J if and only if I ⊆ J .

A chain in the partial order is an increasing sequence in it. An antichain is a set of incomparable
elements.

Using the same idea as above, we can prove:

Theorem 7 (Dilworth). If |S| > rs, then there is either a chain of size r + 1 or an antichain of
size s + 1.
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Proof Suppose every chain is of length at most r. Then for each element x, let ax denote the
length of longest chain that ends at x. By averaging, there must be |S|/r > s elements for which
this value is the same. We claim that this set forms a set of incomparable elements. Indeed, if two
of the elements of this set are comparable, i.e. y 6= x, ay = ax, then if y < x, we can extend the
longest chain ending at y by x to get a chain that ends at x with r + 1 elements.
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