1 More examples of Inclusion-Exclusion

Suppose we are given a family of sets $\left\{A_{1}, \ldots, A_{n}\right\}$. Can we estimate the size of their union in terms of their intersection sizes? For every non-empty subset $I \subseteq[n]$, define $A_{I}=\bigcap_{i \in I} A_{i}$, with the convention that A_{\emptyset} is the set of all elements in the universe.

Last time we showed:
Proposition 1. The number of elements not in any of the sets is $\sum_{I \subseteq[n]}(-1)^{|I|}\left|A_{I}\right|$.
Proof If the universe is of size t, then

$$
\sum_{I \subseteq[n]}(-1)^{|I|}\left|A_{I}\right|=t-\sum_{\emptyset \neq I \subseteq[n]}(-1)^{|I|+1}\left|A_{I}\right|=t-\left|\bigcup_{i=1}^{n} A_{i}\right| .
$$

1.1 Counting Surjections

Question: How many onto functions are there from $[m]$ to $[n]$?
There are n^{m} functions in total. Let A_{i} denote the set of functions that do not map anything to i. Then $\left|A_{I}\right|=(n-|I|)^{m}$. The number of functions that are not in any of these A_{i} (and hence are onto) is

$$
\sum_{I \subseteq[n]}(-1)^{|I|}\left|A_{I}\right|=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{m}
$$

1.2 Computing the Permanent

Given an $n \times n$ boolean matrix M (i.e. a matrix with 0 or 1 entries), its permanent is

$$
\operatorname{perm}(M)=\sum_{\pi \in S_{n}} \prod_{i=1}^{n} M_{i, \pi(i)} .
$$

The naive way to compute the permanent is just by computing each term, which would take $n!\cdot n$ arithmetic operations. Note that computing the permanent is $\# P$-complete, which means that if one can compute the permanent quickly, then we would be able to count the number of satisfying inputs to a circuit quickly or solve SAT.

4 Inclusion Exclusion (contd.) and the Pigeonhole principle-1

A faster way to compute the permanent is via Ryser's formula:

$$
\operatorname{perm}(M)=(-1)^{n} \sum_{I \subseteq[n]}(-1)^{|I|} \prod_{i=1}^{n} \sum_{j \in I}^{n} M_{i, j}
$$

This takes time $n^{2} 2^{n}$.
Given the matrix M, define the family of functions $S=\left\{f:[n] \rightarrow[n] \mid \forall i, M_{i, f(i)}=1\right\}$. The permanent counts the number of these that are permutations!

So let us define the set $A_{i} \subseteq S$ to be the set of all functions in S that do not map onto i. Then we are interested in exactly the number of functions that avoid all the A_{i} 's (and hence are permutations). $\left|A_{I}\right|$ is exactly the number of functions in S that avoid mapping into I and yet pick out the 1 entries of M. For each i, such a function can take exactly $\sum_{j \notin I} M_{i, j}$ values, so $\left|A_{I}\right|=\prod_{i=1}^{n} \sum_{j \notin I} M_{i, j}$.

By inclusion-exclusion, we have that

$$
\sum_{I \subseteq[n]}(-1)^{|I|}\left|A_{I}\right|=\sum_{I \subseteq[n]}(-1)^{|I|} \prod_{i=1}^{n} \sum_{j \notin I} M_{i, j}=\sum_{I \subseteq[n]}(-1)^{n-|I|} \prod_{i=1}^{n} \sum_{j \in I}^{n} M_{i, j}=(-1)^{n} \sum_{I \subseteq[n]}(-1)^{|I|} \prod_{i=1}^{n} \sum_{j \in I} M_{i, j}
$$

as required.

2 What do the first k terms of the sum say?

The Bonferroni inequalities say that the partial sums alternate between being above the target and below the target:

Lemma 2. For any even number $2 k$,

$$
\sum_{j=1}^{2 k} \sum_{I \subseteq[n],|I|=j}\left|A_{I}\right| \leq\left|\bigcup_{i=1}^{n} A_{i}\right| \leq \sum_{j=1}^{2 k+1} \sum_{I \subseteq[n],|I|=j}\left|A_{I}\right|
$$

For the proof, we again count the contribution of a particular element x. If x occurs t times, then the sets of size t are enough to estimate the contribution of x to the union. If we are only going up to sets of size $2 k<t$, then the contribution of x is $1-\sum_{j=1}^{2 k}(-1)^{j}\binom{t}{j}$.

We have the following simple lemma:
Lemma 3. Suppose a_{0}, \ldots, a_{t} is a sequence of numbers such that $\sum_{j}(-1)^{j} a_{j}=0$ and the a_{i} 's are increasing until a_{s} and decreasing after, then for any odd $k, \sum_{j=1}^{k}(-1)^{j} a_{j}$ is negative, and it is positive for even k.

The proof is easiest when one draws a picture. Lemma 3 easily gives Lemma 2.
In general, the values of the terms in the sum upto size k are not enough to estimate the size of the union. However, Linial and Nisan proved that once you get to the size of intersections of size \sqrt{n} sets, then that information is enough to give good estimates on the size of the union:

Theorem 4. Let A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} be two collections of sets such that for all $I \subset[n],|I|<$ $k,\left|A_{I}\right|=\left|B_{I}\right|$. Then,

1. For $k \geq \Omega(\sqrt{n})$,

$$
\frac{\left|\bigcup_{i=1}^{n} A_{i}\right|}{\left|\bigcup_{i=1}^{n} B_{i}\right|}=1+O\left(e^{-2 k / \sqrt{n}}\right)
$$

2. For $k \leq O(\sqrt{n})$,

$$
\frac{\left|\bigcup_{i=1}^{n} A_{i}\right|}{\left|\bigcup_{i=1}^{n} B_{i}\right|}=O\left(n / k^{2}\right)
$$

3 The Pigeonhole Principle

The principle: n pigeons cannot fit in $n-1$ holes.
Here are some clever applications.
Proposition 5. Every graph must have two vertices of the same degree.
Proof If the graph has n vertices, then the degree of every vertex x satisfies $0 \leq d(x) \leq n-1$. Let $T=\{d(x): x$ is a vertex $\}$ be the set of degrees of the graph. If $|T|<n-1$, we are done by the pigeonhole principle. Otherwise, some vertex must have degree 0 and some other vertex must have degree $n-1$. That is impossible!

3.1 Erdős-Szekeres and Dilworth Theorems

Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of numbers. A subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{t}}$ is a sequence such that $i_{1}<i_{2}<\cdots<i_{t}$. We say that the subsequence is increasing if $a_{i_{1}} \leq a_{i_{2}} \leq \cdots \leq a_{i_{t}}$ and decreasing if $a_{i_{1}} \geq a_{i_{2}} \geq a_{i_{t}}$.

Theorem 6 (Erdős-Szekeres). If $n>r s$, then there is either an increasing subsequence of length $r+1$ or a decreasing subsequence of length $s+1$.

Proof Suppose not. For each $i \in[n]$, let x_{i} be the length of the longest increasing subsequence that ends at a_{i}, and y_{i} be the length of the longest decreasing subsequence that starts at a_{i}. Since there is no increasing subsequence of length $r+1, x_{i} \in[r]$ for every i. Similarly, $y_{i} \in[s]$ for all i. Thus the number of such tuples $\left(x_{i}, y_{i}\right)$ is at most $r s$. By the pigeonhole principle, there must be $i<j$ such that $x_{i}=x_{j}, y_{i}=y_{j}$. If $a_{i} \leq a_{j}$, this is impossible, since we can extend the longest increasing subsequence that ends at a_{i} by a_{j} to get a longer one. If $a_{i} \leq a_{j}$, this is again impossible since we can extend the longest decreasing sequence that starts at a_{j} by prefixing a_{i} to it.

A partial order on a set S is a subset of $S \times S$. We write $x<y$ to indicate that (x, y) is in the partial order. We require that $x<y$ and $y<z$ implies that $x<z$. A useful example to keep in mind is partial order on $2^{[n]}$ where $I<J$ if and only if $I \subseteq J$.

A chain in the partial order is an increasing sequence in it. An antichain is a set of incomparable elements.

Using the same idea as above, we can prove:
Theorem 7 (Dilworth). If $|S|>r s$, then there is either a chain of size $r+1$ or an antichain of size $s+1$.

Proof Suppose every chain is of length at most r. Then for each element x, let a_{x} denote the length of longest chain that ends at x. By averaging, there must be $|S| / r>s$ elements for which this value is the same. We claim that this set forms a set of incomparable elements. Indeed, if two of the elements of this set are comparable, i.e. $y \neq x, a_{y}=a_{x}$, then if $y<x$, we can extend the longest chain ending at y by x to get a chain that ends at x with $r+1$ elements.

