
CSE599s: Extremal Combinatorics October 12, 2011

Lecture 5 More Pigeons, and a Proof Complexity Lower Bound

Lecturer: Anup Rao

1 Dirichlet’s Theorem

Theorem 1. Let x be a positive real number. Then for every positive integer n, there is a rational
number p/q such that 1 ≤ q ≤ n and |x− p/q| > 1/nq ≤ 1/q2.

Proof Without loss of generality, assume that 0 < x < 1. Consider the n holes[
0,

1

n

)
,

[
1

n
,

2

n

)
, . . . ,

[
n− 1

n
, 1

)
,

and the n + 1 pigeons which are the fractional parts of the numbers x, 2x, . . . , (n + 1)x. By the
pigeonhole principle, we must have a > b such that ax, bx are in the same holes. So ax = ya + εa,
bx = yb+εb, where ya, yb are positive integers, and εa, εb ∈ [0, 1). Then (a−b)x = (ya−yb)+(εa−εb),
so |(a− b)x− (ya − yb)| < 1/n. Dividing through by (a− b) proves the theorem.

2 Proving the Pigeonhole Principle can be Hard to prove, a de-
tour.

A proof system is specified by a collection of rules that say how to combine true statements to get
new true statements. Formally, the proof system is specified by defining a set of binary strings that
are considered “truths”, and a subset of these that are considered “axioms” and defining a constant
number of functions that can map any two true strings to another string that is true. Once we
have such a collection of rules, we can talk about the proof complexity of a proving a given true
statement using those rules repeatedly applying them to previously derived truths or to axioms.

Investigating the proof complexity in natural proof systems is a whole research area, which has
some consequences to the computational complexity of problems. For example, if we can prove that
P = NP by proving that some algorithm A solves SAT in polynomial time, all in some fixed proof
system P, then one obtains that every satisfiable boolean formula has a polynomial sized proof that
proves that the formula is satisfiable in that proof system using a polynomial sized proof. Thus,
if we can argue that there are satisfiable formulas such that proving they are satisfiable requires
superpolynomial sized proofs, then we will have proved that you cannot prove P = NP in the same
proof system.

Here we shall deal with a very simple proof system useful for proving things about boolean
formulas. A literal is a variable or its complement. A clause is the or of some literals. Given a
collection of clauses, the proof system can be used to show that the clauses cannot all be simulta-
neously satisfied. You can take any two clauses and derive from it another clause that is implied
by them. For example, we can derive (x ∨ y) from the clauses (y ∨ z) and (x ∨ ¬z). The proof is
complete when a contradiction is derived. Figure 1 shows a proof in this proof system. This proof

5 More Pigeons, and a Proof Complexity Lower Bound-1

system is a slight generalization of the proof system called Resolution, and a proof in this system
is called a resolution refutation.

A large clause of SAT solvers can be shown to operate by generating resolution proofs of the
underlying sat formulas, so they have been studied extensively. The size of the proof is the number
of clauses that are derived by it. It can be shown that if there are n unsatisfiable clauses, then
there is a resolution refutation proof of size 2n.

(x ! y ! z) (z ! ¬y) (z ! ¬x) (w ! ¬z) (¬w ! ¬z)

(x ! z)

(z) (¬z)

FALSE

Figure 1: A resolution proof showing that (x∨ y ∨ z)∧ (z ∨¬y)∧ (z ∨¬x)∧ (w ∨¬z)∧ (¬w ∨¬z)
is false.

2.1 Refutations for the Pigeonhole Principle

For every i ∈ [n], j ∈ [n− 1], we shall have a boolean variable xi→j . The variable is set to 1 exactly
when the i’th pigeon is put in the j’th hole. Define a set of clauses called PGNn as follows. We
shall have two types of clauses:

Every pigeon is in some hole: for all i ∈ [n], we have the pigeon clause

Pi = (xi→1 ∨ xi→2 ∨ · · · ∨ xi→n−1)

Every pigeon is in at most one hole: for all i ∈ [n], and all j, j′ ∈ [n− 1] we have the multip-
igeon clause

MPi,j,j′ = (¬xi→j ∨ ¬xi→j′)

Every hole has at most one pigeon: for all j ∈ [n−1] and i 6= i′ ∈ [n], we have the hole clause

Hi,i′,j = (¬xi→j ∨ ¬xi′→j)

The fact that all of the above clauses cannot simultaneously be satisfied is equivalent to the
pigeonhole principle.

Haken then proved the following theorem:

Theorem 2 (Haken). Every resolution refutation for the pigeonhole principle must have size 2Ω(n).

Here we present a simpler proof due to Beame and Pitassi, building on work of Buss.
The first idea is to restrict the refutation to the following special case:

5 More Pigeons, and a Proof Complexity Lower Bound-2

Assumption: Every hole has exactly one distinct pigeon.

In other words, we let the proof assume this fact for free. Even under this assumption, all the
clauses cannot be satisfied, and any proof that finds a contradiction in general must also work under
the assumption. We shall show that it takes an exponential number of derivation steps to get a
contradiction. Under the assumption, all the multipigeon and hole clauses are immediately satisfied.
Also, asserting that the j’th hole does not contain the i’th pigeon is equivalent to asserting that
the j’th hole contains one of the other pigeons. So ¬xi→j is equivalent to

∨
i′ 6=i xi′→j . So we modify

the proof by replacing every negated variable by the corresponding or of variables. Henceforth we
shall assume that there are no negated variables.

We shall show that any such proof must have a clause with many variables.

Claim 3. There must be some clause involving 2n2/9 variables.

Before proving the claim, let us see how it can be used to prove Theorem 2. If we assign pigeon
i to hole j, then the effect this has on the clauses is essentially to make them look like PGNn−1!
Formally, for all j′ 6= j, i′ 6= i, we set xi,j = 1, xi,j′ = 0, xi′,j = 0. Doing this will immediately
reduce every clause that contains xi,j to TRUE, and will simplify other clauses by removing the
other variables we have set.

Now suppose the proof contained less than ` clauses that have at least n2/18 variables. Since
there are less than n2 variables, there must be some variable xi,j that occurs in `/18 of these
clauses, by double counting. Assign the i’th pigeon to the j’th hole. We obtain a proof showing
that PGNn−1 cannot be satisfied, where the number of clauses with at least n2/18 variables has been
reduced to (17/18)`. After repeating this argument n/2 times, we are left with a proof of PGNn/2

with at most (17/18)n/2` clauses of length at least n2/18 = 2(n/2)2/9. Thus ` ≥ (18/17)n/2, or
else Claim 3 will be contradicted.

It only remains to prove the claim.
Proof For every clause C, call the size of the minimal S such that

∧
i∈S Pi ⇒ C the weight

of C. There are n pigeon clauses, and all of them are required to derive a contradiction, so the
contradiction has weight n. One of the clauses used to derive the contradiction must have weight
at least n/2. Continuing in this way, we can find a sequence of clauses C1, . . . , Ct such that the
weight of Ci is at least half the weight of Ci−1, C1 is the contradiction, and Ct is a pigeon clause.
The weight of a pigeon clause is 1. So there must be some clause C in this sequence whose weight
is at most 2n/3, but at least n/3. Let S be the corresponding minimal set of pigeons for C. We
shall prove that C has at least 2n2/9 variables.

Consider any i ∈ S. If ¬Pi ⇒ C, then Pi is not needed to derive C, since if Pi is false, C is
implied anyway. This would contradict the minimality of S. Thus, there must be some assignment
of pigeons to holes such that the i’th pigeon is not in a hole and C is not satisfied (i.e. such that
¬Pi ∧ ¬C). For any j /∈ S, we can give the i’th pigeon the j’th pigeon’s hole. This will satisfy Pi′

for all i′ ∈ S (by our assumption all the other pigeons were already in holes), and so must satisfy
C. Since C does not have any negations, the only way this could happen is if C has the variable
xi,k, where k was the hole of the j’th pigeon in the original configuration. Thus we have shown
that C contains at least n − |S| variables that correspond to the i’th pigeon, one for each j /∈ S.
Repeating this argument for every pigeon in S shows that C has at least n(n−|S|) variables, which
is minimized at 2n2/9, since n/3 ≤ |S| ≤ 2n/3.

5 More Pigeons, and a Proof Complexity Lower Bound-3

