
CSE599s: Extremal Combinatorics October 19, 2011

Lecture 7 Sunflowers, Cliques and a Brief Tour of Circuit Complexity

Lecturer: Anup Rao

1 Avoiding Cliques

Here we prove a couple of results that initiated the study of extremal graph theory. Recall that a
clique of size k is a set of vertices that are pairwise connected by edges.

Question: How many edges can a graph on n vertices have without having a clique of size k?

To prove this kind of theorem, it is a good idea to keep in mind the extremal object that we
are shooting for. We start with Mantel’s theorem, which has to do with avoiding triangles:

Theorem 1 (Mantel). If a graph on 2n vertices has n2 + 1 edges, then it must have a triangle.

The above theorem shows that n2 is the right answer: the complete bipartite graph with
bipartitions of equal size will have n2 edges and no triangle.
Proof We prove the result by induction on n. When n = 1, it is at most 1 edge is possible, so
the theorem is vacuously true.

Now suppose the graph has 2(n + 1) vertices and (n + 1)2 + 1 = n2 + 2n + 2 edges. Let x, y
be adjacent vertices in the graph, and let H denote the subgraph induced on the remaining 2n
vertices. If H contains n2 + 1 edges, then H must contain a triangle by induction, so H must have
at most n2 edges. Thus, there are at least 2n + 2 edges that are not contained in H. One of those
edges is between x, y, but the rest (≥ 2n + 1) are from {x, y} to H. By the pigeonhole principle,
two of these edges must originate from the same vertex v. Then we see that v, x, y form a triangle.

Next we discuss the case of larger cliques. We shall prove the following theorem due to Turán.

Theorem 2 (Turán). If a graph on n vertices has no k + 1 sized cliques, then it has at most(
k
2

)
(n/k)2 edges.

Again, we see that the theorem points to a particular type of extremal graph: Partition the
vertices into k equal sized sets. Consider the graph that has all edges except those that stay in the
same part of the partition. This graph has no k + 1 cliques: for any set of k + 1 vertices, two of the
vertices will be in the same part by the pigeonhole principle, so there are no cliques of size k + 1.
On the other hand, the number of edges is exactly

(
k
2

)
(n/k)2.

Next we prove the theorem. The proof shall closely follow Mantel’s proof for the case k = 2.
Proof We shall prove the statement by induction on n. For n ≤ k, the graph cannot have a
k + 1 sized clique, so the statement is vacuously true.

Suppose we are given a graph on n vertices with no k + 1-cliques. If the graph does not have a
k-clique, then adding any edge cannot give it a k + 1-clique, so keep adding edges until a k-clique
is created. Let A denote a k-clique. Let H denote all the remaining vertices.

7 Sunflowers, Cliques and a Brief Tour of Circuit Complexity-1

The number of edges in A is exactly

(
k

2

)
. (1)

By induction, the number of edges in H is at most(
k

2

)
·
(

n− k

k

)2

. (2)

We claim that the number of edges going from H to A is at most

(k − 1)(n− k) =
(

k

2

)
· 2
(

n− k

k

)
, (3)

otherwise, some vertex of H will be connected to all the vertices of A, forming a k + 1 sized
clique.

Summing the bounds (1), (2), (3), we get that the number of edges in the graph is at most

(
k

2

)(
1 + 2

(
n− k

k

)
+
(

n− k

k

)2
)

=
(

k

2

)(
1 +

n− k

k

)2

=
(

k

2

)
(n/k)2.

2 The Sunflower Lemma

A sunflower is a collection of sets S1, . . . , Sp that have exactly the same pairwise intersection. p
will be called the number of petals.

Lemma 3. Let F be a family of sets of cardinality `. If |F| > `!(p − 1)`, then F contains a
sunflower with p petals.

Proof We use induction on `. For ` = 1, there are more than p − 1 disjoint sets that form a
sunflower.

For larger `, let D be a maximal collection of pairwise disjoint sets from F . If |D| ≥ p, we are
done, since D is a sunflower. Otherwise, let A be the union of the sets of D. Then |A| ≤ (p− 1)`,
and every set in F must intersect some set of A by the maximality of A. Thus, there must be some
element of x ∈ A that is in F/(p − 1)` = (` − 1)!(p − 1)`−1 sets. Construct a family F ′ by taking
these sets out, and removing x from them. By induction, F ′ has a sunflower with p petals, from
which we obtain a sunflower in F by adding back the element x.

It is not known whether this is the right bound or not. Let A1, . . . , A` be disjoint sets of size
p − 1. Consider the family of sets {S : ∀i, |S ∩ Ai| = 1}. This family has (p − 1)` sets, yet no
sunflower with p petals.

So here is a conjecture that is open:

Conjecture 4. For every p, there is a constant C such that any family with C` sets of size ` must
have a sunflower with p petals.

7 Sunflowers, Cliques and a Brief Tour of Circuit Complexity-2

3 Circuits

A boolean circuit is a directed acyclic graph where every vertex has fan-in 0 or 2. The vertices
are sometimes called gates, and the edges are sometimes called wires. Each gate with fan-in 0 is
labeled either by an input variable (xi). Every other gate is labeled by a function mapping 2 bits
to 1 bit. For any fixed input, the value of a gate is the value of the corresponding input variable,
or the value of the corresponding function when evaluated on the gates that fan-in to the gate.

The size of such a circuit is the number of edges in the underlying graph, and we shall write
size(f) to denote the size of the smallest circuit computing a function f . This model of computation
is very robust under small changes.

First, every function can be computed by a circuit of exponential size:

Claim 5. For every f : {0, 1}n → {0, 1}, size(f) ≤ O(2n/n).

If we allow gates with fan-in C for any constant C, this does not change the size of any function
by more than a constant factor, since it can be simulated by a circuit with fan-in 2 of constant size.

Every algorithm that runs in time t(n) can be simulated on n-bit inputs by a circuit of size
t(n)2. Thus, it we want to prove that P = NP , it is enough to prove that some NP-complete
problem cannot be computed by polynomial sized circuits.

Indeed, it is easy to prove that there are many functions that require large circuits:

Lemma 6. Circuits of size s can compute at most 2O(s log s) functions.

Proof Without loss of generality, assume that there are n input gates which take on each of the
variables, and that there is a single designated output gate. Then each other gate must be labeled
with one of 24 = 16 functions. Each gate can take in two inputs, for which there are at most s2

choices. Thus, the total number of configurations is at most (16s2)s = 2O(s log s).

On the other hand, the number of functions on n bits is 22n
. Thus, if s � 2n/n, almost all

functions cannot be computed by circuits of size s. Still, it is open to give an example of any
explicit family of functions {f1, f2, . . . , }, where fn is a boolean function on n bit inputs, such that
limn→∞

size(fn)
n =∞.

Another interesting quantity is the depth of a circuit. The depth is the length of the longest
path in the circuit. Again, it is easy to check that every function can be computed in depth n,
most functions require depth n, yet we know of no examples that require depth more than O(log n)
(which is necessary just to touch all the inputs). It would be very interesting to find an example
of such a function that cannot be computed by a logarithmic depth, linear sized circuit.

In light of this, research has focussed on special cases.

3.1 Linear Circuits

Let us restrict our attention to linear functions over GF (2). Given any parity of k bits (i.e. a sum
of k bits over GF (2)), one can compute it using a circuit of size 2k − 1, just by taking a tree of
parity gates. This is optimal, since any circuit that computes the parity must touch every input
gate that is relevant, and it is easy to check that any graph with fewer edges will not be able to do
it.

The situation becomes more interesting when we consider computing the matrix product Mx,
where x is the n bit input written as an n×1 matrix, and M is a n×n boolean matrix. Then again,

7 Sunflowers, Cliques and a Brief Tour of Circuit Complexity-3

we see that there are 2n2
such linear functions, so all of them cannot be computed by circuits of

size n2/ log n (here we require that every coordinate of Mx appear as some gate in the circuit). We
can restrict the model further by restricting every internal gate of the circuit to only computing
the sum (over GF (2)) of its inputs. Even with all of these restriction, we do not know of a way to
show that a function cannot be computed by a logarithmic depth, linear sized circuit.

So let us restrict the model further. We allow each gate to compute the parity of an unbounded
number of other gates, but restrict the depth of the circuit to be constant. In some sense, this is
like forcing most of the circuit to look like a tree.

Given any two strings a, b ∈ {0, 1}log n, write a · b =
∑log n

i=1 aibi to denote their inner product
(over GF (2)). We define the matrix:

Ha,b = a · b,

where the entries are indexed by log n bit strings.
Since H = AB, where A is the n × log n matrix where every row is a distinct log n bit string,

and B is the log n× n matrix where every column is a distinct log n bit string, we see that H can
be computed by a depth 2 circuit with unbounded fan-in parity gates, using n log n edges. We shall
prove the following theorem, due to Alon, Karchmer and Wigderson:

Theorem 7. Every depth 2 circuit computing H must have Ω(n log n/ log log n) wires.

Proof For a constant c, we shall set m = c log n/ log log n. Now suppose the number of wires
going from the inputs to the middle layer is at most mn/2. Then, there must be at least n/2 input
gates that have at most m wires coming out of them. Consider the family of sets where the universe
is a gate in the middle layer, and the set Si is the set of gates that have a wire from xi into them.
By the sunflower lemma, as long as n/2 ≥ m2m ≥ m!(m − 1)m, we can find a sunflower in this
family.

Suppose S is the core of this sunflower, and Z1, . . . , Zm are the petals, where by relabeling the
variables, we assume Zi corresponds to the variable xi. Then consider any output bit whose linear
form includes exactly one of xi, xj . Such an output bit must use a gate from either Zi or Zj . There
are n/2 such output bits, since for any two variables that correspond to vectors b1, b2, this happens
exactly when a · (b1 + b2) = 1. Thus we find n/2 wires into Zi, Zj . By pairing up all the petals and
repeating the argument, we can find mn/4 wires into the petals.

3.2 Valiant’s Rigidity Argument (not covered in class)

However, Valiant discovered a path to proving such a lower bound. First, he proved the following
lemma about graphs:

Lemma 8. Suppose every path in an undirected acyclic graph with e edges is of length at most 2`.
Then for every k, there is a set of ek/` edges that intersects every path of length 2`−k.

Proof Label every vertex v of the graph by the length of the longest path starting at v, p(v).
Observe that if (u, v) is an edge, then p(u) > p(v). Color an edge (u, v) with the color i if the i’th
bit is the most significant bit where p(u), p(v) disagree in their binary representation. Let S be the

7 Sunflowers, Cliques and a Brief Tour of Circuit Complexity-4

set of edges that are colored with the k most infrequent colors. Then by averaging, we see that
|S| ≤ ek/`.

Now let p′(u) be the number obtained from p(u) by dropping the bit locations in the binary
representation that correspond to the infrequent colors. Then if (u, v) is an edge colored by a
frequent color, p′(u) > p′(v), since the values of the infrequent bits are irrelevant to this inequality.
Thus, we obtain a labeling of the vertices of the graph with 2`−k values, such that the longest path
that starts at u and avoids S is of length at most p′(u).

Thus, (ignoring issues of rounding) given any circuit depth c · logn and size c · n with parity
gates computing Mx, we can find a small subset of cnk/ log log n gates, such that all paths of length
c log n/2k must pass through this set of gates. In other words,

Mx = B(x, Ax),

where A is an cnk/ log log n × n matrix that computes the values computed at the special gates,
and B is a linear function that can be computed in depth c log n/2k. Since B is computable in such
small depth, every row of B has at most nc/2k

non-zero values. In total, this shows that

M = S + L,

where S = B(x, 0) is sparse in the sense that every row has at most nc/2k
entries, and L = B(0, Ax)

has rank at most 2cnk/ log log n. Valiant called a matrix that cannot be expressed this way a rigid
matrix. It is easy to show that most matrices are rigid. Thus, it would be enough to find a rigid
matrix to find a matrix that cannot be computed in small depth and small size.

7 Sunflowers, Cliques and a Brief Tour of Circuit Complexity-5

