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Natural models often have unexpected connections between
them. Let us take a brief interlude to explore one such unexpected
connection between branching programs and circuits, that was dis-
covered by Barrington. Barrington showed:

Theorem 1. If f : {0, 1}n → {0, 1} can be computed by a circuit of depth
d, then it can be computed by a branching program of width 5 and length
O(4d).

The theorem is not known to hold with
width 4.This is a really powerful statement. It is especially useful if you

want to prove lower bounds — if you want to show that a function
cannot be computed in small depth, you can try to prove that the
function cannot be computed using a small width branching pro-
gram of small length. It is much easier to show the converse of the
theorem:

Theorem 2. If f : {0, 1}n → {0, 1} can be computed by a branching
program of width O(1) and length 2d, then it can be computed by a circuit
of depth O(d).

Sketch of Proof Every width w branching program can be thought
of as computing a function gx : [w] → [w], where x is the input to
the program. We shall prove inductively that you can compute the
function gx in depth Cd, for some large constant C.

The idea is to break up the program into the first half of the pro-
gram, which computes hx, and the second half, which computes qx.
Then gx = hx ◦ qx is composition of these two functions. We re-
cursively compute hx and qx. This computation should take depth
C(d − 1). Then we use a constant number of gates to compute gx

from the descriptions of the two functions. Since the width is just a
constant, this takes depth C for some constant C. Our final depth is
C(d− 1) + C = C(d).

Now, let us turn to proving Theorem 1.
Proof We are given a circuit of depth d computing f and need to
compute the same function using a width 5 branching program. We
shall restrict our attention to width 5 branching programs that com-
pute permutations of [5] = {1, 2, 3, 4, 5}. Before we give the construc-
tion, we need to describe some nice properties of cyclic permutations.
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Figure 1: Two cyclic permutations.

A cyclic permutation is a permutation π with the property that
if you start at 1, and keep applying the permutation, you eventually
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visit all elements of [5]. For example, the permutation shown in Fig-
ure 1 are cyclic. Here are some nice properties of cyclic permutations.
These are all easy to verify, but we leave it as an exercise to do it:

• If π is cyclic, then so is π−1.

• There are two cyclic permutations of [5], π, σ with the property
that πσπ−1σ−1 is another cyclic permutation. This will be called
the commutator property below. For example, set π = (12345), σ =

(13542), and then the composition is (13254).

• For any two cyclic permutations π, σ, there is a permutation τ

(not necessarily cyclic), such that τπτ−1 = σ. This we be called
conjugation.

Now, for the purpose of carrying out the proof, we shall design a
branching progam that on input x computes a permutation πx, such
that if f (x) = 0, then πx is the identity permutation, but if f (x) = 1,
then πx is a fixed cyclic permutation, say γ = (12345). This branch-
ing program computes f (x).

Suppose we have already made a program computing πx that rep-
resents g(x), and we want to compute ¬g(x). To do this, we simply
add a layer that computes γ−1. The new program computes πxγ−1.
Call the new program σx. If g(x) is 0, σx = γ−1, and if g(x) = 1,
σx is the identity permutation. Now, by conjugation, there is another
permuation τ such that τγ−1τ−1 = γ. We apply two more layers
to implement this, and so recover the program that corresponds to
¬g(x).

Suppose the final gate of the circuit is a ∧ gate. So, the final output
is f (x) = g(x) ∧ h(x). Then, by induction we have two programs,
one computing πx that corresponds to g(x), and the other computing
σx that corresponds to h(x). After doing some conjugation, we can
ensure that if g(x) = h(x) = 1, then πx, σx satisfy the commutator
property. If either of them is the identity, then we have πxσxπ−1

x σ−1
x

is also the identity. So, we get that πxσxπ−1
x σ−1

x is cyclic if and only
if f (x) = 1. Applying another conjugation gives us back the final
program.

Gates that compute ∨ can be handled using the above methods,
since g(x) ∨ h(x) = ¬(¬g(x) ∧ ¬h(x)).

We see that the length of the program generated in the above
process satisfies `d ≤ 4`d−1 + O(1). The solution to this recurrence is
`d ≤ O(4d).
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Turing Machines

A Turing Machine is essentially a program written in a par-
ticular programming language. The program has access to three
arrays and three pointers:

• x which is accessed using the pointer i. x is an array that can be
read but not written into.

• y which is accessed using the pointer j. y can be read and written
into.

• z which is accessed using the pointer k. z can only be written into.

The machine is described by its code. Each line of code reads the
bits xi, yj, and based on those values, (possibly) writes new bits into
yj, zk, and then possibly after incrementing or decrementing i, j, k,
jumps to a different line of code or stops computing. Initially, the
input is written in x and the goal is for the output to be written in
z at the end. i, j, k are all set to 1 to begin with. The arrays all have
a special symbol to denote the beginning of the tape and a special
symbol to denote the blank parts of the tape.

For example here is a program that copies the input to the output
using a single line:

1. If xi is empty, then HALT. Else set zk = xi and increment each of
i, k. Jump to step 1.

Here is another that outputs the input bits which are in odd loca-
tions:

1. If xi is empty, then HALT. Else set zk = xi, increment each of i, k
and jump to step 2.

2. If xi is empty, then HALT. Else increment each of i, k and jump to
step 1.

The exact details of this model are not important. The main reason
we introduce it is to have a fixed model of computation in mind. For
example, it is easy to show that adding more tapes or increasing the
alphabet size does not change the model significantly, as we shall
discuss further next time.

Resources of Turing Machines

Once we have fixed the model, we can start talking about the com-
plexity of computing a particular function f : {0, 1}∗ → {0, 1}. Fix
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a turing machine M that computes a function f . There are two main
things that we can measure:

• Time. We can measure how many steps the turing machine takes
in order to halt. Formally, the machine has running time T(n) if on
every input of length n, it halts within T(n) steps.

• Space. We can measure the maximum value of j during the run of
the turing machine. We say the space is S(n) if on every input of
length n, j never exceeds S(n).

The following fact is immediate:

Fact 3. The space used by a machine is at most the time it takes for the
machine to run.

Robustness of the model: Extended Church-Turing Thesis

The reason Turing machines are so important is because of
the Extended Church-Turing Thesis. The thesis says that every efficient
computational process can be simulated using an efficient Turing
machine as formalized above. Here we say that a Turing machine is The original (non-extended) thesis

made a much tamer claim: that any
computation that can be carried out by
a human can be carried out by a Turing
machine.

efficient if it carries out the computation in polynomial time.
The Church-Turing Thesis is not a mathematical claim, but a wishy

washy philosophical claim about the nature of the universe. As far
as we know so far, it is a sound one. In particular if one changed
the above model slightly (say by providing 10 arrays to the machine
instead of just 3, or by allowing it to run in parallel), then one can
simulate any program in the new model using a program in the
model we have chosen.

Claim 4. A program written using symbols from a larger alphabet Γ that
runs in time T(n) can be simulated by a machine using the binary alphabet
in time O(log |Γ| · T(n)).

Sketch of Proof We encode every element of the old alphabet in
binary. This requires O(log |Γ|) bits to encode each alphabet sym-
bol. Each step of the original machine can then be simulated using
O(log |Γ|) steps of the new machine.

Claim 5. A program written for an L-tape machine that runs in time T(n)
can be simulated by a program for a 3-tape machine in time O(L · T(n)2).

Sketch of Proof The idea is to encode the contents of all the new
work arrays into a single work tape. To do this, we can use the first
L locations on the work tape to store the first bit from each of the L
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arrays, then the next L locations to store the second bit from each of
the L arrays, and so on. To encode the location of the pointers, we
increase the size of the alphabet so that exactly one symbol from each
tape is colored red. This encodes the fact that the pointer points to
this symbol of the tape. The actual pointer in the new Turing ma-
chine will then do a big left to right sweep of the array to simulate a
single operation of the old machine.

The following theorem should not come as a surprise to most of
you. It says that there is a machine that can compile and run the code
of any other machine efficiently:

Theorem 6. There is a turing machine M such that given the code of
any Turing machine α and an input x as input to M, if α takes T steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We shall say that a machine runs in time t(n) if for every input
x, the machine halts after t(|x|) steps (here |x| is the length of the
string x). Similarly, we can measure the space complexity of the ma-
chine. The crucial point is that small changes to the model of Turing
machines does not affect the time/space complexity of computing
a particular function in a big way. Thus it makes sense to talk about
the running time for computing a function f , and this measure is not
really model dependent.

Lower bounds—Counting arguments

We have shown that every function f : {0, 1}n → {0, 1} can be
computed by a circuit of size at most O(2n/n), and on the other hand
we show that for n large enough there is a function that cannot be
computed by a circuit of size less than 2n/(3n). The lower bound we
prove here was first shown by Shanon. He introduced a really simple
but powerful technique to prove it, called a counting argument.

Theorem 7. For every large enough n, there is a function f : {0, 1}n →
{0, 1} that cannot be computed by a circuit of size 2n/3n.

Proof We shall count the total number of circuits of size s, where
s > n. To define a circuit of size s, we need to pick the logical op-
erator for each (non-input) gate, and specify where each of its two
inputs come from. There are at most 3 choices for the logical oper-
ation, and at most s choices for where each input comes from. So
the number of choices for each non-input gate is at most 3s2. The
number of choices for an input gate is at most n < 3s2. So, the total
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number of choices for each gate is at most 3s2 + n, and the number of
possible circuits of size s is at most

(3s2 + n)s ≤ (4s2)s = 2s log(4s2) < 23s log s,

when n > 4.
This means that the total number of circuits of size 2n/3n is less

than 23· 2n
3n ·n = 22n

. On the other hand, the number of functions
f : {0, 1}n → {0, 1} is exactly 22n

. Thus, not all these functions can be
computed by a circuit of size 2n/(3n).

Indeed, the above argument shows that the fraction of functions
f : {0, 1}n → {0, 1} that can be computed by a circuit of size 2n/4n is

at most 2
3
4 ·2

n

22n = 1
22n−2 , which is extremely small.

Similar arguments can be used to show that not every function has
an efficient branching program (as you will do on your homework).
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