
Lecture 6: NL and coNL
Anup Rao

February 9, 2022

In this lecture, we continue our discussion of space complexity
classes. We first introduce a new definition. Given any set of boolean
functions S, we write coS to denote the set

{ f : 1− f ∈ S}.

Thus coNP is the set of functions for which there is an efficiently
verifiable proof that f (x) = 0.

Fact 1. P = coP

Fact 2. L = coL

Fact 3. EXP = coEXP

We do not know if NP = coNP. To show that coNP ⊆ NP, it
would be enough to a polynomial time algorithm that can certify that
a boolean formula is unsatisfiable.

Fact 4. If P = NP, then NP = coNP.

On the other hand, we can show:

Theorem 5. For space constructible s(n), NSPACE(s(n)) = coNSPACE(s(n)).

Proof As usual we focus on the configuration graph. To prove
the theorem, it will be enough to be able to verify that there is no
path from two vertices u, v in the graph, in s(n) space. This would
show that if f (x) = 1 can be certified in space s(n), then f (x) = 0
can also be certified in space s(n). The other direction is completely
symmetric.

We shall prove how to do this by designing a sequence of algo-
rithms. Let Ci denote the set of vertices that are reachable from u in i
steps. Suppose the graph is of size at most 2s.

Claim 6. Given any vertex v and a number i ≤ 2s, there is a non-
deterministic space s(n) algorithm such that:

• If v ∈ Ci, then some computational path outputs 1

• If v /∈ Ci, then every computational path outputs 0.

The algorithm simply guesses a path from u to v and checks that
the path is a valid path of the graph by checking each edge in order.

lecture 6: nl and conl 2

Claim 7. Given the size of |Ci−1| = c, and a vertex v, there is a non-
deterministic space s(n) algorithm such that

• If v /∈ Ci, there is some computational path that outputs 1.

• If v ∈ Ci, then every computational path outputs 0.

Since the algorithm is given the size of Ci−1i, the algorithm guesses
each of the vertices of Ci−1 in increasing order, and for each one,
it checks that the vertex is different from the last vertex that was
guessed, and then uses Claim 6 to verify that the vertex is indeed a
member of Ci−1. It also makes sure that the given vertex is not v and
not a neighbor of v. It maintains a count of all the number of vertices
guessed and checks that |Ci−1| vertices are given. If any of the checks
fail, the algorithm outputs 0.

Finally, we argue that given the size of Ci−1, we can certify the size
of |Ci|.

Claim 8. Given the size of |Ci−1| = c′, there is a non-deterministic space
s(n) algorithm such that the algorithm either aborts or outputs |Ci| on every
computational path, and there is some computational path on which the
algorithm outputs |Ci|.

For each vertex v of the graph (in increasing order), the algorithm
uses Claims 6 and 7 to check whether v ∈ Ci or v /∈ Ci, and it main-
tains a count of the number of vertices in Ci.

Thus, we obtain an algorithm that can verify that v /∈ Cn in
O(s(n)) space. We first compute Cn by repeatedly using Claim 8

and then we apply Claim 7 to check whether v /∈ Cn.

