
Lecture 7: TQBF
Anup Rao

February 16, 2022

The TQBF function maps the set of totally quantified boolean formu-
las to 0 or 1. A totally quantified boolean formula is something that
looks like this:

ψ = ∃x1∀x2∃x3 · · · ∃xnφ(x1, . . . , xn),

where here φ is a boolean formula on the variables x1, . . . , xn.

TQBF(ψ) = 1 if and only ψ is true.

TQBF’s help characterize PSPACE.

Lemma 1. TQBF(ψ) for ψ = ∃x1∀x2∃x3 · · · ∃xnφ(x1, . . . , xn) can be
computed in space O(m · n), where size of φ is m. In other words, TQBF ∈
PSPACE.

Proof First note that for every fixing of x1, . . . , xn, φ can be com-
puted in space O(m). Let

A = ∀x2∃x3 · · · ∃xnφ(0, x2, . . . , xn)

and
B = ∀x2∃x3 · · · ∃xnφ(1, x2, . . . , xn).

We know that TQBF(ψ) = TQBF(A) ∨ TQBF(B) (similarly we will
have to compute A ∧ B when the first quantifier is a ∀). Writing down
A takes at most O(m) space. Let S(n) denote the space required to
compute TQBF(ψ). Now, computing A recursively uses S(n − 1)
space. After computing A, we can store the answer (one bit) and
erase all contents of the tape that was used to compute A. We then
write down B and compute TQBF(B) recursively. Overall, we have
that S(n) = S(n− 1) + O(m). As we know that S(0) = O(m), we can
conclude that S(n) = O(m · n).

Theorem 2. For every boolean f ∈ PSPACE, there is a polynomial time
computable function g mapping bits to truly quantified boolean formulas
such that f (x) = TQBF(g(x)).

Proof We shall show how to use the formula to encode connectiv-
ity in the configuration graph of the machine that computes f . This is
a graph of size 2t = 2poly(n).

We generate a formula ψi(A, B) in poly(n) time that checks whether
there is a path of length ≤ 2i from A to B. When i = 0. ψi(A, B) just

lecture 7: tqbf 2

needs to check that B is the configuration that comes after A. Since
we know that there is a polynomial sized circuit C such that C(x, A)

computes the configuration that follows from A, we can construct a
circuit F of size poly(n) such that

F (A, B, x) =

1 if C(A, x) = B,

0 else.

Just like in the proof that SAT is NP-complete, we can generate a
polynomial sized formula F(y) such that ∃yF(y) is true if and only if
F (A, B, x) = 1.

For the general case, note that there is a path of length at most 2i

from A to B if and only if there is some vertex C in the graph such
that there is a path of length 2i−1 from A to C and a path of length
2i−1 from C to A. Thus we can define

ψi(A, B) = ∃C, ψi−1(A, C) ∧ ψi−1(C, B).

However, this doubles the size of the formula ψi−1 (which means
that after t steps we will be trying to generate a formula that is expo-
nentially big and this is impossible in polynomial time).

Indeed, we haven’t yet used the ∀ quantifiers. Let us use the same
idea as before to define the smaller formula:

ψi(A, B)

= ∃C, ∀X, ∀Y, (X = A ∧Y = C) ∨ (X = C ∧Y = B)⇒ ψi−1(X, Y)

= ∃C, ∀X, ∀Y, (¬(X = A ∧Y = C) ∧ ¬(X = C ∧Y = B)) ∨ ψi−1(X, Y)

The end result is a formula of size poly(n, t) that checks for a path
of length 2t in the graph as required.

Lower Bounds on SAT

The material in this section was not discussed in class. We include it
here as you might find it interesting. Although we cannot say any-
thing non-trivial about the running time required to compute SAT,
or the space required to compute SAT, we can show that SAT cannot
have an algorithm that is both linear time and log space:

Theorem 3. There is no turing machine computing SAT in O(n) time and
O(log n) space.

In order to prove the theorem, we shall rely on two facts that we
have convinced ourselves of before:

lecture 7: tqbf 3

Theorem 4. If t(n) ≥ Ω(n), any f ∈ NTIME(t(n)) can be reduced in
in logarithmic space and time O(t(n) log(t(n))) to computing SAT on a
formula of size O(t(n) log t(n)).

Earlier in the course we proved that the reduction is in polynomial
time, but in fact it is even in L. (Think about this!). The reduction
works by first computing a circuit that simulates the computation
of a machine, and then computing the formula that simulates the
execution of the circuit.

Another theorem we shall appeal to is the deterministic time hier-
archy theorem:

Theorem 5 (Time Hierarchy). If r, t are time-constructible functions
satisfying r(n) log r(n) = o(t(n)), then DTIME(r(n)) (DTIME(t(n)).

Proof of Theorem 3: Assume for the purpose of contradiction that
there is a turing machine computing SAT in O(n) time and O(log n)
space. The idea is to use the purported SAT algorithm to get an un-
reasonable speed up of computations. Suppose for the sake of con-
tradiction that SAT can be computed in linear time and logarithmic
space.

Suppose that f ∈ DTIME(n2) via the machine M f and f /∈
DTIME(npolylog(n)). Such an f exists by Theorem 5. We shall show
how to compute f in time O(npolylog(n)), giving us the desired con-
tradiction.

By appealing to Theorem 4, consider the machine M that runs as
follows on input x ∈ {0, 1}n:

1. Generate the formula φ of size n2 log n that simulates the machine
M f (x), using Theorem 4.

2. Check whether M f (x) accepts by computing SAT(φ) in time
O(n2 log n) and space O(log(n2 log n)) = O(log n).

M is not our final simulation. M computes f in time O(n2 log n)
and space O(log n).

Consider the configuration graph of M. This graph accepts if and
only if there is an accepting path of length t = O(n2 log n), which
happens if and only if there exist

√
t intermediate configurations

C1, . . . , C√t, such that there is a path of length
√

t between intermedi-
ate configurations. In other words, f (x) = 1 if and only if

∃C1, . . . , C√t, ∀i, Ci follows from Ci−1 in
√

t steps.

Each configuration takes only O(log n) bits to write down. So once
we guess all of these

√
t configurations, the problem of determining

whether they determine an accepting of path of length t can be en-
coded using a SAT formula of size O(

√
t · log n · polylog(t, n)) (by The-

orem 4), so it can be solved in deterministic time O(
√

t · polylog(t, n)).

lecture 7: tqbf 4

Thus we can compute a formula ψ of size O(
√

t · polylog(t, n)) such
that f (x) = 1 if and only if

∃C1, . . . , C√t, ∃z, ψ(C1, . . . , C√t, z).

The above is an instance of SAT and can then be solved determin-
istically in time O(

√
t · polylog(n, t)). Thus, overall, we get a simula-

tion in deterministic time O(
√

t · polylog(t, n)) = O(npolylog(n)) =

o(n2), contradicting the deterministic time hierarchy theorem.

Randomized Algorithm review

We did not discuss this material in class. I include it here for your
reference:

Probability Spaces

A probability space is a set Ω such that every element a ∈ Ω is as-
signed a number 0 ≤ Pr[a] ≤ 1 (called the probability of a), and
∑a∈Ω Pr[a] = 1.

An event in this space is a subset E ⊆ Ω. The probability of the
event is ∑a∈E Pr[a]. For example, imagine we toss a fair coin n times.
Then the probability space consists of the 2n possible outcomes of the
coin tosses. If E is the event that the first k coin tosses are heads, this
event has probability exactly 2−k. Given two events E, E′, we write
Pr[E|E′] to denote Pr[E ∩ E′]/ Pr[E′]. This is the probability that E
happens given that E′ happens. We say that E, E′ are independent if
Pr[E ∩ E′] = Pr[E] · Pr[E′]. In other words, E, E′ are independent if
Pr[E|E′] = Pr[E].

A real valued random variable is a function X : Ω → R. The number
of heads in the coin tosses is a random variable. The expected value
of a random variable X is defined as E [X] = ∑a∈Ω Pr[a] · X(a). The
following lemma is a very useful fact about random variables.

Lemma 6 (Linearity of expectation). If X, Y are real random variables,
then E [X + Y] = E [X] + E [Y].

Proof

E [X + Y] = ∑
a∈Ω

Pr[a] · (X(a) + Y(a))

= ∑
a∈Ω

Pr[a] ·Y(a) + ∑
a∈Ω

Pr[a] · X(a)

= E [X] + E [Y] .

lecture 7: tqbf 5

Here is an expectation basic magic
trick: Tell your audience to generate
two sequences of coin tosses—one
generated using 200 flips of a coin,
and the second generated by hand.
You leave the room, and they write
both sequences on a black board. Then
you come back into the room and
immediately point out the sequence
that was generated by hand. The trick:
a random sequence is very likely to
have a run of 7 heads or tails, while
people tend to not insert such a long
run into a sequence that they think
looks random.

For example, let us calculate the expected number of runs of see-
ing 7 contiguous heads or tails in a 200 coin tosses. Let Xi be 1 if
there are 7 heads or tails that start at the i’th position, and 0 other-
wise. If 1 ≤ i ≤ 194, then E [Xi] = Pr[Xi = 1] = 2 · 2−7 = 1/64. If
i ≥ 196, then Xi = 0. On the other hand, the total number of such
runs is ∑194

i=1 Xi. So by linearity of expectation, the expected number
of such runs is 194/64 ≈ 3.031.

In class, we discussed the waiting time to see the first heads. Sup-
pose you keep tossing a fair coin until you see heads. Let T be the
number of tosses you make. What is the expected value of T? The
key observation is that if the first toss is a heads, you stop with
T = 1. Otherwise, the rest of the experiment is exactly the same
as the original random experiment. So, we get:

E [T] = (1/2) · 1 + (1/2) · (1 + E [T])

⇒E [T] · (1− 1/2) = 1

⇒E [T] = 2.

Randomized Algorithms

We shall give a few examples of problems where randomness helps
to give very effective solutions.

Matrix Product Checking

Suppose we are given three n× n matrices A, B, C, and want to check
whether A · B = C. One way to do this is to just multiply the ma-
trices, which will take much more than n2 time. Here we give a ran-
domized algorithm that takes only O(n2) time.

Input: 3 n× n-matrices A, B, C
Result: Whether or not A · B = C.
Sample an n coordiante column vector r ∈ {0, 1}0,1 uniformly at
random ;

if A(B(r)) = C(r) then
Output “Equal”;

else
Output “Not equal”;

end

Algorithm 1: Algorithm for Multiplication Checking

lecture 7: tqbf 6

The algorithm only takes O(n2) time. For the analysis, observe
that if AB = C, then the algorithm outputs “Equal” with probability
1. If AB 6= C, the algorithm outputs “Equal” only when ABr = Cr ⇒
(AB− C)r = 0. We shall show that this happens with probability at
most 1/2.

Let D = AB − C. Then D 6= 0, so let dij be a non-zero entry of
D. Then we have that the i’th coordinate (Dr)i = ∑k dik · rk. This
coordinate is 0 exactly when rj = (1/dij)∑k 6=j dikrk. Finally, observe

Pr

[
rj = (1/dij) ∑

k 6=j
dikrk

]

= ∑
a

Pr

[
a = (1/dij) ∑

k 6=j
dikrk

]
· Pr

[
rj = a|a = (1/dij) ∑

k 6=j
dikrk

]

≤ 1/2 ∑
a

Pr

[
a = (1/dij) ∑

k 6=j
dikrk

]
= 1/2.

Exercise: Modify the above algorithm so that the probability the
algorithm outputs “Equal” when AB 6= C is at most 1/4.

2-SAT

A two SAT formula is a CNF formula where each clause has exactly
2-variables. Here we give a randomized algorithm that can find a
satisfying assignment to such a formula, if one exists.

Input: A two sat formula φ

Result: A satisfying assignment for φ if one exists
Set a = 0 to be the n-bit all 0 string;
for i = 1, 2, . . . , 100n2 do

if φ(a) = 1 then
Output a;

end
Let ai, aj be the variables of an arbitrary unsatisfied clause.
Pick one of them at random and flip its value ;

end
Output “Formula is not satisfiable”;

Algorithm 2: Algorithm for 2 SAT

If φ is not satisfiable, then clearly the algorithm has a correct out-
put. Now suppose φ is satisfiable and b is a satisfying assignment,
so φ(b) = 1. We claim that the algorithm will find b (or some other
satisfying assignment) within 100n2 steps with high probability. To

lecture 7: tqbf 7

understand the algorithm, let us keep track of the number of coordi-
nates that a, b disagree in during the run of the algorithm. Observe
that during each run of the for loop, the algorithm picks a clause that
is unsatisfied under a. Since b satisfies this clause, a, b must disagree
in one of the two variables of this clause. Thus the algorithm reduces
the distance from a to b with probability 1/2.

Thus we can think of the algorithm as doing a random walk on the
line. There are n + 1 points on the line, and at each step, if the algo-
rithm is at position i it moves to position i + 1 with probability 1/2
and to position i − 1 with probability at least 1/2. We are interested
in the expected time before the algorithm hits position 0. Let

ti = E [# steps before hitting position 0 from position i] .

Then we have the following equations:

t0 = 0,

ti = (1/2)ti+1 + (1/2)ti−1 + 1 i 6= 0, n

⇒ ti − ti−1 = ti+1 − ti + 2

tn = 1 + tn−1.

Thus we can compute:

tn = (tn − tn−1) + (tn−1 − tn−2) + . . . + (t1 − t0)

= 1 + 3 + . . .

=
n

∑
j=1

(2j− 1) = 2

(
n

∑
j=1

j

)
− n = n(n + 1)− n = n2.

Thus the expected time for the algorithm to find a satisfying as-
signment is n2.

Lemma 7.

Pr[algorithm does not find satisfying assignment in 100n2 steps] < 1/100.

Proof We have that

n2 ≥ E [# steps to find assignment]

=
∞

∑
s=0

s · Pr[s steps to find assignment]

≥ Pr[at least 100n2 steps are taken] · 100n2.

Therefore,

Pr[more than 100n2 steps are taken] < 1/100.

lecture 7: tqbf 8

Max Cut

Given a graph G = (V, E), a subset S ⊂ V is called a cut of the graph.
The size of the cut is the number of edges that cross from S to V − S.
It is known to be NP-hard to compute the MAX-cut of a graph. Here
we give a simple randomized algorithm that will compute a cut that
is half as big as the biggest cut in expectation.

The algorithm is just to pick the subset S at random, by includ-
ing every vertex in S with probability half. For each edge e, let Xe be
the random variable that is 1 if e goes from S to V − S, and 0 other-
wise. Then we see that the size of the cut is exactly ∑e∈E Xe. We can
compute E [Xe] = 1/2, and so by linearity of expectation,

E

[
∑
e∈E

Xe

]
= ∑

e∈E
E [Xe] = |E|/2.

Fingerprinting

Suppose Alice has an n-bit string x and Bob has an n-bit string y,
and they want to check that they are equal. Naively this takes n
bits of communication between them. We can do much better using
randomization.

Alice samples a random prime number p from the set of primes
that are less than cn ln n, for some constant c that we shall pick later.
She then sends p and x mod p to Bob. Bob checks that x mod p is
equal to y mod p. Thus they only need to communicate O(log n) bits
in this process.

If x = y, this will always produce the right outcome. We shall
argue that if x 6= y, the probability that they make a mistake is going
to be very small. To do this, we need a theorem:

Theorem 8 (Prime number theorem). Let π(a) denote the number of
primes that are at most a. Then lima→∞

π(a)
a/ ln a = 1.

When x 6= y, the above process fails only when p divides x − y.
Since |x − y| ≤ 2n, x − y can have at most n prime factors. On the
other hand, by the prime number theorem, the number of primes of
size up to cn ln n is at least cn ln n/(ln(cn ln n)) = Ω(cn). Thus the
probability that the prime Alice picks divides x− y is at most O(1/c).

Randomized Classes

There are several different ways to define complexity classes involv-
ing randomness. A turing machine with access to randomness is just
like a normal turing machine, except it is allowed to toss a random
coin in each step, and read the value of the coin that was tossed.

lecture 7: tqbf 9

BPP

We say that the randomized machine computes the function f if for
every input x, Prr[M(x, r) = f (x)] ≥ 2/3, where the probability is
taken over the random coin tosses of the machine M. BPP is the set
of functions that are computable by polynomial time randomized
turing machines in the above sense.

RP

We shall say that f ∈ RP if there is a randomized machine that
always compute the correct value when f (x) = 0, and computes the
correct value with probability at least 2/3 when f (x) = 1.

ZPP

Finally, we define the class ZPP to be the set of boolean functions
that have an algorithm that never makes an error, but whose expected
running time is polynomial in n.

	Randomized Algorithm review
	Probability Spaces
	Randomized Algorithms
	Randomized Classes

