
Lecture 9: IP = PSPACE
Anup Rao

March 5, 2022

Interactive proofs

One way to define NP is via the idea of a proof system. NP is the set
of functions f for which there is a polynomial time verifier algorithm
V such that given any x with f (x) = 1, there exists a prover P that
can prove to the verifier that f (x) = 1 by providing a polynomial
sized witness w for which V(x, w) = 1, yet if f (x) = 0, no such
prover exists.

What happens if we allow the verifier to have a longer interactive
conversation? Presumably, giving the verifier the ability to adaptively
ask the prover questions based on his previous responses should
give the verifier more power, and so allow the verifier to verify the
correctness of the value for a larger set of functions. In fact, this
does not give the verifier additional power: for if there is such an
interactive verifier V I for verifying that f (x) = 1, we can design a
non-interactive verifier that does the same job. The new verifier will
demand that the prover provide the entire transcript of interactions
between V I and a convincing prover. The new verifier can then verify
that the transcript is correct, and would have convinced V I . Thus, if f
has an interactive verifier, then f ∈ NP.

The story is more interesting if we allow the verifier to be random-
ized. We say that f ∈ IP if there is a polynomial time randomized
verifier V such that

Completeness For all x, if f (x) = 1, there is an oracle P such that
Prr[VP(x, r) = 1] ≥ 2/3.

Soundness For all x, if f (x) = 0, for every oracle P, Prr[VP(x, r) =

1] ≤ 1/3.

Since any prover can be simulated in polynomial space, if f ∈ IP,
then f ∈ PSPACE. The algorithm for f can just try all possible
sequences of messages from the prover until it finds a sequence of
messages that convinces the verifier, if such a sequence exists.

Theorem 1. IP ⊆ PSPACE.

It is easy to check that allowing the prover to be randomized does
not change the model.

We shall eventually prove that IP = PSPACE (and so IP is poten-
tially much more powerful than NP).

lecture 9: ip = pspace 2

Example: Graph non-Isomorphism

Two graphs on n vertices are said to be isomorphic if the vertices of
one of the graphs can be permuted to make the two equal.

Consider the problem of testing whether two graphs are not iso-
morphic: the boolean function f such that f (G1, G2) is 1 if and only if
G1 is not isomorphic to G2. f ∈ coNP, since the prover can just send
the verifier the permutation that proves that they are isomorphic. We
do not know if f ∈ NP, but it is easy to prove that f ∈ IP.

Here is the simple interactive protocol:

1. The verifier picks a random i ∈ {1, 2}.

2. The verifier randomly permutes the vertices of Gi and sends the
resulting graph to the prover.

3. The prover responds with b ∈ {1, 2}.

4. The verifier accepts if i = b.

If G1, G2 are not isomorphic, then any permutation of Gi deter-
mines i, so the prover can determine i and send it back. However, if
G1, G2 are isomorphic, then the graph that the prover receives has the
same distribution whether i = 1 or i = 2, thus the prover can guess
the value of i with probability at most 1/2. Repeating the protocol
several times, the verifier can make the probability of being duped by
a lying prover exponentially small.

A protocol for counting satisfying assignments

We continue to exhibit the power of interaction by showing how it
can be used to solve any problem in PSPACE. Recall that the prob-
lem of computing whether a totally quantified boolean formula is
true is complete for PSPACE, so it will be enough to give an interac-
tive protocol that verifies that such a formula is true.

As a warmup, let us consider the case when we are given a for-
mula of the type ∃x1, . . . , xnφ(x1, . . . , xn) and want to count the num-
ber of satisfying assignments to this formula. Since the permanent is
complete for #P, we can reduce this counting problem to the compu-
tation of the permanent, and then use the interactive protocol from
the last lecture, but let us be more direct.

As in the protocol for the permanent, we shall leverage algebra.
Since polynomials are much nicer to deal with than formulas, let us
try to encode the formula φ using a multivariate polynomial. Here is
a first attempt at building such an encoding gate by gate:

• x ∧ y→ xy.

lecture 9: ip = pspace 3

• ¬x → 1− x.

• x ∨ y → x + y − xy.

This encoding gives us a polynomial gφ that computes the same
value as the formula φ, however it is not clear that gφ can be com-
puted in polynomial time. The problem is the encoding for ∨ gates,
which could potentially double the size of the polynomial obtained
in each step. Instead, we use the more clever encoding:

• x ∨ y → 1 − (1 − x)(1 − y).

This allows us to obtain a polynomial gφ which can be written down
in time polynomial in the size of φ.

Then the task of counting the number of satisfying assignments to
φ reduces to computing ∑x∈{0,1}n gφ(x). Following the ideas used
in the protocol for the permanent, here is a protocol for a verifier that
checks that ∑x∈{0,1}n gφ(x) = k.

1. Ask the prover for a prime 22n > p > 2n , and check that it is
correct. Reject if k < p. All arithmetic is henceforth done modulo
p.

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the degree n polynomial

f (X) = ∑
x2 ,...,xn∈{0,1}n−1

gφ(X , x2 , . . . , xn).

4. Check that f (0) + f (1) = k mod p.

5. Pick a random element a ∈ Fp and recursively check that

f (a) = ∑
x2 ,x3 ,...,xn∈{0,1}n−1

gφ(a, x2 , . . . , xn)

For the analysis, note that f (X) is indeed a degree n polynomial,
since there are at most n gates in the formula φ. Thus if

∑
x∈{0,1}n

gφ(x) = k,

an honest prover can convince the verifier with probability 1.
If ∑x∈{0,1}n gφ(x) 6= k, then the if the prover succeeds, it must be

that
f (X) 6= ∑

x2 ,...,xn∈{0,1}n−1

gφ(X , x2 , . . . , xn),

for if the prover is honest, he will be caught immediately.

lecture 9: ip = pspace 4

Since f (X), ∑x2 ,...,xn∈{0,1}n−1 gφ(X , x2 , . . . , xn) are both degree n
polynomials, we have that

Pr
a

 f (a) = ∑
x2 ,...,xn∈{0,1}n−1

gφ(a, x2 , . . . , xn)

 ≤ n/ p,

so with high probability, the prover is left with trying to prove an
incorrect statement in the next step. By the union bound, the proba-
bility that the prover succeeds in any step is at most n2/ p � 1/3 for
large n.

A protocol for TQBF

To handle checking whether a formula of the type

∃xi∀x2∃x3 . . . ∀xnφ(x1, . . . , xn)

is true, it is clear that this is equivalent to checking the identity that

∑
x1

∏
x2

∑
x3

. . . ∏
xn

gφ(x1, . . . , xn) = k > 0.

This is just another polynomial identity, so a first attempt might be
to use a protocol of the following type:

1. Ask the prover for a suitably large prime p, and check that it is
correct. Reject if k < p. All arithmetic is henceforth done modulo
p.

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the polynomial

f (X) = ∏
x2

∑
x3

. . . ∏
xn

gφ(X, x2, . . . , xn).

4. Check that f (0) + f (1) = k mod p (or f (0) · f (1) = k mod p as
appropriate.

5. Pick a random element a ∈ Fp and recursively check that

f (a) = ∏
x2

∑
x3

. . . ∏
xn

gφ(a, x2, . . . , xn)

There are several problems with this approach. For one thing the
product term can generate the product of 2n terms giving a number k
that is as large as 22n

. So the prover cannot even write down k using
less than 2n bits, which means that the verifier cannot compute with
it in polynomial time. Similarly, the degree of the polynomial f can
be as large as 2n, so the verifier cannot do any computations with it.

In order to handle the first problem, we appeal to the prime num-
ber theorem and the chinese remainder theorems:

lecture 9: ip = pspace 5

Theorem 2 (Prime Number Theorem). Let π(t) denote the number of
primes in [t]. Then

lim
t→∞

π(t)
t/ ln t

= 1.

The theorem says that Θ(1/n) fraction of all n bit numbers are
prime.

Theorem 3 (Chinese Remainder Theorem). If k is divisible by distinct
primes p1 , . . . , pt , then k must be bigger than the product ∏i pi .

Now consider the set of primes in the interval [2n , 210n]. By The-
orem 2 there Θ(210n /n) primes that are less than 210n , but at most
2n of them are less than 2n , so this interval must contain Θ(210n /n)
primes. The product of all these primes is at least (2n)Ω(210n /n) =

2Ω(210n) . Thus, for n large enough, the product is much larger than
∑x1 ∏x2 ∑x3

. . . ∏xn gφ(x1 , . . . , xn) = k. Recall that k ≤ 22n
.

Thus by Theorem 3, if k > 0, there must be some prime p ∈
[2n , 210n] such that

∑
x1

∏
x2

∑
x3

. . . ∏
xn

gφ(x1 , . . . , xn) = k 6= 0 mod p.

This allows us to fix the first problem: the verifier can ask the prover
to send this prime and the value of k mod p, and perform all arith-
metic modulo p.

Next we turn to the second issue. While it is true that the polyno-
mials generated in the above proof can have high degree, note that
since we are only interested in evaluating the polynomials we are
working with over inputs that are bits, it never makes sense to raise
a variable to degree more than 1: x2 = x for x ∈ {0, 1}. Thus, we
could ask the prover to work with the polynomial that is obtained
from gφ by replacing all high degree terms with terms that have de-
gree 1 in each variable. However, we cannot trust that the prover will
be honest, so we shall have to check that the prover does this part
correctly.

Given any polynomial g(X1 , . . . , Xn) define the operator L1 as

L1 g(X1 , . . . , Xn) = X1 · g(1, X2 , . . . , Xn) + (1− X1) · g(0, X2 , . . . , Xn).

Then note that L1 g takes on the same value as g when X1 ∈ {0, 1}.
Similarly, we can define Li for each i ∈ [n].

Our final protocol is then as follows. In order to prove that

∑
x1

∏
x2

. . . ∏
xn

gφ(x1 , . . . , xn) 6= 0,

we shall instead ask the prover to prove that

∑
x1

L1 ∏
x2

L1 L2 ∑
x3

L1 L2 L3 ∏
x4

. . . Ln−1 Ln ∏
xn

gφ(x1 , . . . , xn) = k 6= 0 mod p.

lecture 9: ip = pspace 6

In order to describe the protocol, in general we are going to be
trying to prove a statement of the form O1O2Ot gφ(x1 , . . . , xn) = k
mod p, where Oi is either ∑xi

, ∏xi
or Li for some i. Some of the

variables xi may be set to constants ai during this process, but this
will not change the protocol.

The verifier proceeds as follows:

1. Ask the prover for a prime p ∈ [2n , 210n] and k ∈ [p − 1] such
that

O1O2Ot gφ(x1 , . . . , xn) = k mod p,

2. If t = 1, check the identity by computing it and terminate the
protocol.

3. If O1 is ∑xi
,

(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gφ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

(b) Check that f (0) + f (1) = k mod p .

4. If O1 is ∏xi
,

(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gφ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

(b) Check that f (0) · f (1) = k mod p .

5. If O1 is Li , then xi = ai has been set to be a constant.

(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gφ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

(b) Check that ai f (0) + (1 − ai) f (1) = k mod p .

6. Pick a random element a ∈ Fp and recursively check that

f (a) = O2O3 . . . gφ(x1 , . . . , xi−1 , a, xi+1 , xn)

As before, an honest prover can convince the verifier with proba-
bility 1. On the other hand, a dishonest prover can succeed only by
sending an incorrect polynomial f , and then such a prover will man-
age to convince the verifier with probability at most O(t/ p) � 1/3.

	Interactive proofs
	Example: Graph non-Isomorphism
	A protocol for counting satisfying assignments
	 A protocol for TQBF

