
Lecture 1: Computational Models, Branching Pro-
grams and Circuits
Anup Rao

September 27, 2023

Our goal in this course is to mathematically capture the concept
of computation. In the broadest sense, what is computation? What
is the best way to model computation? How can we reason about
whether something can be efficiently computed or not? What are the
resources that are worth measuring with regards to computational
efficiency? Complexity theory is about addressing these questions.

A first attempt at defining a computation might be to say that it is
a process that manipulates information in some way, or has an input-
output behavior. For example, when reading this sentence, your brain
takes the information encoded graphically and translates that infor-
mation into letter, words and ideas, and so performs a computation.

At this point you may feel that we have made the model too gen-
eral to be useful, so it might be useful to explain what is not compu-
tation. A useful mathematical abstraction that captures some of the
things we have discussed is the abstraction of functions. Given two
sets D, R, a function

f : D → R

assigns a value f (x) ∈ R to every element of x ∈ D. So, if we think of
D as the set of all possible images, and R as the set of all sentences, f
can be defined to be the function that maps the picture of a sentence
to the actual sentence. This abstraction misses something that is
inherent about physical computational processes: computations are
local. At any point, the state of two parts of the brain that are far
away from each other cannot affect each other.

Informally, a computational process is a process that manipulates
information in some local or restricted way. Interesting computational
processes are ones that manage to have a complicated global effect
through incremental local steps. There are many such computational
processes, and we will not be able to talk about all of them in de-
tail in this course. The aim of this course is to show you, in broad
strokes, how you can start to reason about such computational pro-
cesses and their complexity.



lecture 1: computational models, branching programs and circuits 2

Computational Complexity

How can we distinguish functions that are easy to compute from
functions that are hard? What makes some things easy and other
things hard?

In order to tackle this kind of question, we first need mathematical
models that captures exactly what the process we are interested in
can do cheaply, and what takes more effort. We would like our mod- For example, we are very good at

reading text, but multiplying 100
digit numbers takes us considerably
more time, even though the amount of
information is contained in a picture
is much more than the information
contained in a 100 digit number.

els to be general enough that they capture most real computational
processes, and simple enough that we can ask and understand easy
questions about them.

A crucial issue is how the information being manipulated is en-
coded. For example, if numbers are encoded using their prime fac-
torization (both in the input and output), then it is slightly easier for
us to multiply two 100 digit numbers than if they are encoded us-
ing their digits. Under this representation, addition of numbers, and
comparing two numbers becomes harder. Addition is hard when numbers are

represented in terms of their factor-
ization because we would have to
factor the sum to bring it back in this
representation. We do not know of
any efficient algorithms for factoring
numbers.

So, given a function f : D → R, we would like to be able to
quantify how difficult it is to compute this function. We shall make
two immediate simplifications.

• We shall identify the the input domain with the set of binary
strings of arbitrary length {0, 1}∗, or the set of strings of some
fixed length {0, 1}n. Since every countable set can be mapped to
the first set, and every finite set can be mapped to the second, this
does not lose too much generality.

• We shall often restrict the output domain to be R = {0, 1}. This
does lose some generality, but it will turn out that most of our
ideas will easily translate to the situation when the output do-
main is bigger. Further, for most examples of functions to bigger
domains that are hard to compute, we shall be able to easily find
corresponding boolean functions that are hard to compute.

Next we give several examples of computational models, and
discuss some strengths and weaknesses of each of them.

Finite Automata

A finite automaton can be used to compute functions f :
{0, 1}∗ → {0, 1}. An example is shown in Figure 1. One starts at
the start state (labeled S), and reads the input bit by bit, transition-
ing on the states. The output is 1 if and only if we ever hit the accept
state (labeled A).



lecture 1: computational models, branching programs and circuits 3

S

A

0
0

1

1

Figure 1: A finite state automaton that
accepts strings that have a 1 in some
odd location.

The weaknesses of this model:

• The set of functions f : {0, 1}∗ → {0, 1} that can be computed by
any finite automaton is not very general. Even more damning— Only functions that represent regular

languages can be computed by a finite
automaton.

finite automata cannot compute functions that we can efficiently
compute in practice. Try to prove that no finite automaton

can compute the function whose out-
put is 1 if and only if the input is a
palindrome.

• It does not give a way to measure the complexity of computing
functions. We can count the number of states in the automaton,
but since this is always a constant independent of n, this measure
of complexity doesn’t scale with the input size, and so does not
map to what we are trying to capture — the level of difficulty
involved in carryout the computation.

Finite automata are a uniform model of computation. This means
that there is a single description of the process that can be used to
carry out the computation no matter how long the length of the input
is.

Branching Programs

Branching programs are very similar to finiate automata. This
is a model that computes functions f : {0, 1}n → {0, 1}.

A branching program is a directed acyclic graph where every
vertex is labeled by either a variable or an output value. Every vertex
that is labeled by a variable has exactly two edges coming out of it,
one labeled 1 and the other labeled 0. The vertices are partitioned
into disjoint sets L0, . . . , Lk, and all edges go from some set Li to Li+1.
There is a special designated start node in the graph. To carry out the
computation, we start at the start state, and follow the indicated path



lecture 1: computational models, branching programs and circuits 4

X1

X2

X2

X3

X3

0

1
1
1
0

0

X4

X4

1
1
0

0

Xn

Xn

0

1

1
1
0

0

Figure 2: A branching program that
computes whether or not the number of
1’s in the input is even.

by reading the variable that labels the state that we are on in each
step. When we hit a node labeled by an output value, the output of
the computation is that output value.

There are two measures of the complexity of the program. The
width is the size of the largest layer. The length is the number of
layers.

This model has the advantage that it can actually compute all
functions:

Fact 1. Every function f : {0, 1}n → {0, 1} can be computed by a
branching program with width 2n, and length n + 1.

Proof Consider the branching program that is a rooted tree, where
every node at level i reads the variable xi. The program simply re-
members the entire input. Each of the 2n inputs x gets mapped to a
distinct leaf, so that leaf can be labeled by the value f (x) to compute
f .

In class, we discussed how every finite
automaton for a function f : {0, 1}∗ →
{0, 1} can be used to get a branching
program of size O(n) that computes f
on all the inputs of length n.

Branching programs will be used later in the course as a way to
capture computations that use a small amount of space (or mem-
ory). The main drawback of branching programs is that there are
algorithms which run very quickly on computers in practice that
we don’t know how to model as small branching programs. So, the
branching program complexity doesn’t seem to capture everything
we want to capture about efficient computation.

Branching programs define a non-uniform model of computation.
The program only tells you how carry out computation on an input
of length n. To talk about the asymptotic complexity of computing a
function f : {0, 1}∗ → {0, 1} that is defined on strings of all lengths,
we need to talk about families of branching programs, and discuss
the complexity of the programs as n gets larger and larger.

Boolean Circuits

A boolean circuit computing a function f : {0, 1}n → {0, 1} is a
directed acyclic graph with the following properties. Every vertex
(also called a gate) has at most 2 edges coming in to it. If there are 0



lecture 1: computational models, branching programs and circuits 5

X1 X2 X3 X4 X5 X6

∧

∨

∧

∧

∨

∨

¬

∨
Figure 3: An example of a boolean
circuit.

edges coming in, then the vertex is labeled with an input variable xi,
or the constants 0 or 1. Otherwise, the vertex is labeled with one of
the boolean operators ∧,∨,¬, and computes the specified operation
on the bits that come in along the incoming edges. One of the gates
in the circuit is designated the output node. This is the node whose
value is the output of the circuit.

When every gate has out-degree at most 1, the circuit is called a
formula. In the case of a formula, the graph of the circuit looks like a
tree after edges have been converted into undirected edges.

A circuit can also be viewed as a program in a simple program-
ming language, where every line is an assignment. For example, the
circuit in Figure 3 is equivalent to this program:

1. y1 = x1 ∧ x2

2. y2 = x3 ∨ x4

3. y3 = ¬x5

4. y4 = x5 ∧ x6

5. y5 = y1 ∨ y2

6. y6 = x5 ∨ y4

7. y7 = y5 ∧ y3

8. y8 = y7 ∨ y6

There are two major quantities we can measure to capture the
complexity of a circuit:

Definition 2. The size of the circuit is the number of gates in the circuit.



lecture 1: computational models, branching programs and circuits 6

Xn

∧ ∧

∨

¬f1 f0

f
Figure 4: Recursive construction of a
circuit for f .

Since every gate in the circuit has at most 2 incoming edges, the
size of the circuit is proportional to the number of edges in the graph
that defines the circuit:

Fact 3. The size of the circuit is the same as the number of edges in the
circuit, up to a factor of 2.

We can also measure the depth of the circuit:

Definition 4. The depth of the circuit is the length of the longest input to
output path.

The depth complexity is a measure of how much parallel time it
takes to compute the function.

Just like branching programs, boolean circuits can complete every
function:

Theorem 5. Every function f : {0, 1}n → {0, 1} can be computed by a
circuit of size at most O(2n).

Proof We construct the circuit recursively. When n = 1, there
is clearly a constant sized circuit that computes f , since f must be
either a constant, x1 or ¬x1.

For n > 1, let f0 denote the function on n − 1 bits given by f0(x) =
f (x, 0), and f1(x) = f (x, 1). Then by induction we can compute f0, f1

recursively, and combine them using the value of the last bit to obtain
f , as in Figure 4. When xn = 1, the circuit outputs f1(x1, . . . , xn−1),
and when xn = 0, the circuit outputs f0(x1, . . . , xn−1).

If Sn is the size of the resulting circuit when the underlying func-
tion takes an n bit input, we have proved that

Sn ≤ 2Sn−1 + 5.

Expanding this recurrence, and using the fact that S1 ≤ 5, we get



lecture 1: computational models, branching programs and circuits 7

that

Sn ≤
n

∑
i=1

2i5 = 5 · (2n+1 − 1) < 10 · 2n,

where here we used the formula for computing the sum of a geomet-
ric series.

The above theorem is not the best result we know about this sub-
ject. In fact, we know:

Theorem 6. Every function f : {0, 1}n → {0, 1} can be computed by a
circuit of size at most O(2n/n).

You will be asked to prove this on your homework.

Some interesting relationships between Branching Programs and
Circuits

Natural models often have unexpected connections between them.
Here we explore one such unexpected connection between branching
programs and circuits, that was discovered by Barrington. Barrington
showed:

Theorem 7. If f : {0, 1}n → {0, 1} can be computed by a circuit of depth
d, then it can be computed by a branching program of width 5 and length
O(4d).

The theorem is not known to hold with
width 4.This is a really powerful statement. It is especially useful if you

want to prove lower bounds — if you want to show that a function
cannot be computed in small depth, you can try to prove that the
function cannot be computed using a small width branching pro-
gram of small length. It is much easier to show the converse of the
theorem:

Theorem 8. If f : {0, 1}n → {0, 1} can be computed by a branching
program of width O(1) and length 2d, then it can be computed by a circuit
of depth O(d).

Sketch of Proof Every width w branching program can be thought
of as computing a function gx : [w] → [w], where x is the input to
the program. We shall prove inductively that you can compute the
function gx in depth Cd, for some large constant C.

The idea is to break up the program into the first half of the pro-
gram, which computes hx, and the second half, which computes qx.
Then gx = hx ◦ qx is composition of these two functions. We re-
cursively compute hx and qx. This computation should take depth
C(d − 1). Then we use a constant number of gates to compute gx

from the descriptions of the two functions. Since the width is just a



lecture 1: computational models, branching programs and circuits 8

constant, this takes depth C for some constant C. Our final depth is
C(d − 1) + C = C(d).

Now, let us turn to proving Theorem 7.
Proof We are given a circuit of depth d computing f and need to
compute the same function using a width 5 branching program. We
shall restrict our attention to width 5 branching programs that com-
pute permutations of [5] = {1, 2, 3, 4, 5}. Before we give the construc-
tion, we need to describe some nice properties of cyclic permutations.

1

25

4 3

5

34

2 1
Figure 5: Two cyclic permutations.

A cyclic permutation is a permutation π with the property that
if you start at 1, and keep applying the permutation, you eventually
visit all elements of [5]. For example, the permutation shown in Fig-
ure 5 are cyclic. Here are some nice properties of cyclic permutations.
These are all easy to verify, but we leave it as an exercise to do it:

• If π is cyclic, then so is π−1.

• There are two cyclic permutations of [5], π, σ with the property
that πσπ−1σ−1 is another cyclic permutation. This will be called
the commutator property below. For example, set π = (12345), σ =

(13542), and then the composition is (13254).

• For any two cyclic permutations π, σ, there is a permutation τ

(not necessarily cyclic), such that τπτ−1 = σ. This we be called
conjugation.

Now, for the purpose of carrying out the proof, we shall design a
branching progam that on input x computes a permutation πx, such
that if f (x) = 0, then πx is the identity permutation, but if f (x) = 1,
then πx is a fixed cyclic permutation, say γ = (12345). This branch-
ing program computes f (x).

Suppose we have already made a program computing πx that rep-
resents g(x), and we want to compute ¬g(x). To do this, we simply
add a layer that computes γ−1. The new program computes πxγ−1.
Call the new program σx. If g(x) is 0, σx = γ−1, and if g(x) = 1,
σx is the identity permutation. Now, by conjugation, there is another
permuation τ such that τγ−1τ−1 = γ. We apply two more layers
to implement this, and so recover the program that corresponds to
¬g(x).

Suppose the final gate of the circuit is a ∧ gate. So, the final output
is f (x) = g(x) ∧ h(x). Then, by induction we have two programs,
one computing πx that corresponds to g(x), and the other computing
σx that corresponds to h(x). After doing some conjugation, we can
ensure that if g(x) = h(x) = 1, then πx, σx satisfy the commutator
property. If either of them is the identity, then we have πxσxπ−1

x σ−1
x

is also the identity. So, we get that πxσxπ−1
x σ−1

x is cyclic if and only



lecture 1: computational models, branching programs and circuits 9

if f (x) = 1. Applying another conjugation gives us back the final
program.

Gates that compute ∨ can be handled using the above methods,
since g(x) ∨ h(x) = ¬(¬g(x) ∧ ¬h(x)).

We see that the length of the program generated in the above
process satisfies ℓd ≤ 4ℓd−1 + O(1). The solution to this recurrence is
ℓd ≤ O(4d).


	Computational Complexity
	Finite Automata
	Branching Programs
	Boolean Circuits
	Some interesting relationships between Branching Programs and Circuits

