
Lecture 2: Turing machines, counting arguments,
diagonalization, incompleteness, complexity classes
Anup Rao

October 4, 2023

A Turing Machine is essentially a program written in a par-
ticular programming language. The program has access to three
arrays and three pointers:

• x which is accessed using the pointer i. x is an array that can be
read but not written into.

• y which is accessed using the pointer j. y can be read and written
into.

• z which is accessed using the pointer k. z can only be written into.

The machine is described by its code. Each line of code reads the
bits xi, yj, and based on those values, (possibly) writes new bits into
yj, zk, and then possibly after incrementing or decrementing i, j, k,
jumps to a different line of code or stops computing. Initially, the
input is written in x and the goal is for the output to be written in
z at the end. i, j, k are all set to 1 to begin with. The arrays all have
a special symbol to denote the beginning of the tape and a special
symbol to denote the blank parts of the tape.

For example here is a program that copies the input to the output
using a single line:

1. If xi is empty, then HALT. Else set zk = xi and increment each of
i, k. Jump to step 1.

Here is another that outputs the input bits which are in odd loca-
tions:

1. If xi is empty, then HALT. Else set zk = xi, increment each of i, k
and jump to step 2.

2. If xi is empty, then HALT. Else increment each of i, k and jump to
step 1.

The exact details of this model are not important. The main reason
we introduce it is to have a fixed model of computation in mind. For
example, it is easy to show that adding more tapes or increasing the
alphabet size does not change the model significantly, as we shall
discuss further next time.

lecture 2: turing machines, counting arguments, diagonalization, incompleteness,
complexity classes 2

Resources of Turing Machines

Once we have fixed the model, we can start talking about the com-
plexity of computing a particular function f : {0, 1}∗ → {0, 1}. Fix
a turing machine M that computes a function f . There are two main
things that we can measure:

• Time. We can measure how many steps the turing machine takes
in order to halt. Formally, the machine has running time T(n) if on
every input of length n, it halts within T(n) steps.

• Space. We can measure the maximum value of j during the run of
the turing machine. We say the space is S(n) if on every input of
length n, j never exceeds S(n).

The following fact is immediate:

Fact 1. The space used by a machine is at most the time it takes for the
machine to run.

Robustness of the model: Extended Church-Turing Thesis

The reason Turing machines are so important is because of
the Extended Church-Turing Thesis. The thesis says that every efficient
computational process can be simulated using an efficient Turing
machine as formalized above. Here we say that a Turing machine is The original (non-extended) thesis

made a much tamer claim: that any
computation that can be carried out by
a human can be carried out by a Turing
machine.

efficient if it carries out the computation in polynomial time.
The Church-Turing Thesis is not a mathematical claim, but a wishy

washy philosophical claim about the nature of the universe. As far
as we know so far, it is a sound one. In particular if one changed
the above model slightly (say by providing 10 arrays to the machine
instead of just 3, or by allowing it to run in parallel), then one can
simulate any program in the new model using a program in the
model we have chosen.

Claim 2. A program written using symbols from a larger alphabet Γ that
runs in time T(n) can be simulated by a machine using the binary alphabet
in time O(log |Γ| · T(n)).

Sketch of Proof We encode every element of the old alphabet in
binary. This requires O(log |Γ|) bits to encode each alphabet sym-
bol. Each step of the original machine can then be simulated using
O(log |Γ|) steps of the new machine.

Claim 3. A program written for an L-tape machine that runs in time T(n)
can be simulated by a program for a 3-tape machine in time O(L · T(n)2).

lecture 2: turing machines, counting arguments, diagonalization, incompleteness,
complexity classes 3

Sketch of Proof The idea is to encode the contents of all the new
work arrays into a single work tape. To do this, we can use the first
L locations on the work tape to store the first bit from each of the L
arrays, then the next L locations to store the second bit from each of
the L arrays, and so on. To encode the location of the pointers, we
increase the size of the alphabet so that exactly one symbol from each
tape is colored red. This encodes the fact that the pointer points to
this symbol of the tape. The actual pointer in the new Turing ma-
chine will then do a big left to right sweep of the array to simulate a
single operation of the old machine.

The following theorem should not come as a surprise to most of
you. It says that there is a machine that can compile and run the code
of any other machine efficiently:

Theorem 4. There is a turing machine M such that given the code of
any Turing machine α and an input x as input to M, if α takes T steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We shall say that a machine runs in time t(n) if for every input
x, the machine halts after t(|x|) steps (here |x| is the length of the
string x). Similarly, we can measure the space complexity of the ma-
chine. The crucial point is that small changes to the model of Turing
machines does not affect the time/space complexity of computing
a particular function in a big way. Thus it makes sense to talk about
the running time for computing a function f , and this measure is not
really model dependent.

Lower bounds—Counting arguments

We have shown that every function f : {0, 1}n → {0, 1} can be
computed by a circuit of size at most O(2n/n), and on the other hand
we show that for n large enough there is a function that cannot be
computed by a circuit of size less than 2n/(3n). The lower bound we
prove here was first shown by Shanon. He introduced a really simple
but powerful technique to prove it, called a counting argument.

Theorem 5. For every large enough n, there is a function f : {0, 1}n →
{0, 1} that cannot be computed by a circuit of size 2n/3n.

Proof We shall count the total number of circuits of size s, where
s > n. To define a circuit of size s, we need to pick the logical op-
erator for each (non-input) gate, and specify where each of its two
inputs come from. There are at most 3 choices for the logical oper-
ation, and at most s choices for where each input comes from. So

lecture 2: turing machines, counting arguments, diagonalization, incompleteness,
complexity classes 4

the number of choices for each non-input gate is at most 3s2. The
number of choices for an input gate is at most n < 3s2. So, the total
number of choices for each gate is at most 3s2 + n, and the number of
possible circuits of size s is at most

(3s2 + n)s ≤ (4s2)s = 2s log(4s2) < 23s log s,

when n > 4.
This means that the total number of circuits of size 2n/3n is less

than 23· 2n
3n ·n = 22n

. On the other hand, the number of functions
f : {0, 1}n → {0, 1} is exactly 22n

. Thus, not all these functions can be
computed by a circuit of size 2n/(3n).

Indeed, the above argument shows that the fraction of functions
f : {0, 1}n → {0, 1} that can be computed by a circuit of size 2n/4n is

at most 2
3
4 ·2

n

22n = 1
22n−2 , which is extremely small.

Similar arguments can be used to show that not every function has
an efficient branching program (as you will do on your homework).

Diagonalization

We used counting arguments to show that there are functions
that cannot be computed by circuits of size o(2n/n). If we were to
try and use the same approach to show that there are functions f :
{0, 1}∗ → {0, 1} not computable Turing machines we would first try
to show that:

turing machines ≪ # functions f .

This approach doesn’t seem like it makes any sense at first, because
both numbers here are infinite. Luckily, mathematicians have long
studied how to compare the sizes of infinite sets.

Recall the definitions of the following sets:

N = {1, 2, 3, . . . } the natural numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . . } the integers

2N = {A ⊆ N} the set of sets of natural numbers

Q = {i/j : i, j ∈ Z, j ̸= 0} the rational numbers

R =

{
lim
i→∞

xi : x1, x2, . . . ∈ Q is a convergent sequence
}

the real numbers

To compare the sizes of these sets, we use the concept of countabil-
ity. A function ϕ : N → S is said to be surjective if for every s ∈ S,
there is an i ∈ N such that ϕ(i) = s.

lecture 2: turing machines, counting arguments, diagonalization, incompleteness,
complexity classes 5

Definition 6. A set S is countable, if there is a surjective function ϕ :
N → S.

Equivalently, S is countable if there is a list ϕ(1), ϕ(2), . . . of ele-
ments from S, such that every element of S shows up at least once on
the list.

Let us try to understand which of the sets we have discussed are
countable.

Fact 7. N is countable.

Proof Consider the list 1, 2, 3, This obviously contains every
element of N.

Fact 8. Z is countable.

Proof Consider the list 0, 1,−1, 2,−2, 3,−3, This obviously
contains every element of Z.

Fact 9. Z × Z = {(i, j) : i, j ∈ Z} is countable.

Proof Consider the list

(0, 0), (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0),

(−1,−1), (0,−1), (1,−1), (2,−1), . . . ,

shown in Figure 1. This list contains every element of Z × Z. Indeed,
we are enumerating all pairs (i, j) where the max{|i|, |j|} is 0, then
all pairs where max{|i|, |j|} is 1 and so on. Clearly, every pair occurs
somewhere in the list.

Fact 10. Q is countable.

Proof Since Z × Z is countable, just take the list of all pairs from
Z × Z, and discard an entry if j = 0 and replace it with i/j if j ̸= 0.
This gives an enumeration of Q.

The interesting thing is that some sets can be shown to be un-
countable, using the technique of diagonalization.

Fact 11. 2N is not countable.

Proof Suppose there was some list of sets A1, A2, Then con-
sider the set

T = {i : i ∈ N, i /∈ Ai}.

We claim that T is not in the list. Indeed, suppose T = Aj for some j.
Then if j ∈ Aj, j /∈ T by our construction, and if j /∈ Aj, then j ∈ T. In
either case, T ̸= Aj.

lecture 2: turing machines, counting arguments, diagonalization, incompleteness,
complexity classes 6

(0,0)

Figure 1: Enumeration of Z × Z.

A1

A2

A3

A4

A5

1 2 3 4 5

1

0

1

1

1

0

0

0

0

1

1

1

1

0

1

0

0

1

0

0

0

0

1

0

0

A1 = {1,2,…}

A1 = {3,…}

A3 = {1,3,4,5,…}

A4 = {1,…}

A5 = {1,2,3,…}

T = {2,4,5,…} T 0 1 0 1 1

Figure 2: Diagonalization of a list of
sets.

The proof we just used is called a proof by diagonalization, be- It was discovered by Cantor

cause we can think of doing it using the picture described in Figure
2. We encode each set in our list using a binary string. The set T
we picked is obtained by taking the set that is obtained by choosing
something that disagrees with the diagonal in the picture.

A very similar idea can be used to show that the real numbers are
not countable:

Fact 12. R is not countable.

Proof Every real number can be thought of as a number with a
potentially infinite decimal expansion.

Suppose r1, r2, . . . is an enumeration of the real numbers. Consider
the real number t = 0.d1d2 . . . , where the i’th digit di is chosen so that

lecture 2: turing machines, counting arguments, diagonalization, incompleteness,
complexity classes 7

di is not the same as the i’th digit of ri. Then t is a real number that
does not occur anywhere in the list of ri’s, since it disagrees with the
i’th number in the i’th digit after 0.

A very similar idea gives an impossibility result for Turing Ma-
chines.

Theorem 13. There is a function that is not computed by any Turing
Machine.

Before we see the the simple proof, let us point out that this is
philosophically a very powerful fact. A consequence of it is that
assuming the Church-Turing Thesis is true, there are some ways to
manipulate information that can never occur in the universe. It seems
hard to imagine a physical process that violates the Church-Turing
thesis, and it also seems hard to stomach the fact that the universe
cannot manipulate information in a particular way, yet one of those
two (admittedly wishy washy) strange things must happen.

We shall need some notation before discussing the proof. Given a
string α, we write Mα to denote the Turing Machine whose code is α.
Proof Consider the function f : {0, 1}∗ → {0, 1} defined as follows:

f (α) =

1 if Mα(α) = 0

0 else.

No Turing Machine can compute this function, for if there was
some machine that could, then let γ denote the binary encoding of
its code. Then we have that Mγ(γ) = f (γ), but this contradicts the
definition of f , since if f (γ) = 0, then Mγ(γ) cannot be 0, and if
f (γ) = 1, Mγ(γ) cannot be 1.

You may object that the uncomputable f that we found above is
very unnatural, but actually it is not hard to come up with natural
examples that are also impossible to compute using Turing Machines.

For example, we can define the function HALT : {0, 1}∗ → {0, 1}
that takes as input two strings α, x, and then decides whether Mα(x)
halts or runs forever. This seems like a very useful function to com-
pute, but it is also uncomputable.

Theorem 14. HALT is not computable by a Turing Machine.

Proof Suppose it was. Then consider the machine M that on in-
put α first simulates HALT(α, α). If the answer is that Mα(α) halts,
then M simulates Mα(α) and outputs the opposite of its output. If
Mα(α) does not halt, then M outputs 0. Then M computes the un-
computable function f above.

lecture 2: turing machines, counting arguments, diagonalization, incompleteness,
complexity classes 8

Gödel’s Incompleteness Theorem

Diagonalization was also used to prove Gödel’s famous incomplete-
ness theorem. The theorem is a statement about proof systems. We
sketch a simple proof using Turing machines here.

A proof system is given by a collection of axioms. For example,
here are two axioms about the integers:

1. For any integers a, b, c, a > b and b > c implies that a > c.

2. For any integer a, a + 1 > a.

Given a list of such axioms, a proof is a sequence of statements
that uses the axioms to prove that a statement is true. For example,
to prove that a > b implies that a + 1 > b, we can combine the
assumption a > b with the axiom a + 1 > a and the first axiom, to
prove a + 1 > b.

Prior to Gödel’s work, mathematicians were trying to axiomatize
all of mathematics. They were looking for a set of finite axioms that
could be combined to prove any proof statement. Godel proved that
this a doomed project.

A set of axioms is consistent if the axioms don’t contradict each
other. The set of axioms is complete if every true statement can be
derived from the set of axioms. Godel proved:

Theorem 15. Every consistent finite set of axioms is incomplete.

We give an alternate proof due to Chaitin. Given x ∈ {0, 1}∗, its
Kolmogorov complexity K(x) is the length of the shortest program α

such that Mα(.) = x. Namely it is the length of the shortest program
that outputs x. For each x ∈ {0, 1}∗, N ∈ N, let Sx,N be the statement

K(x) > N.

Fact 16. For every N, there is an x for which Sx,N is true.

Proof There are only a finite number of programs of length N, so
for each N, there are only a finite number of x’s such that K(x) ≤ N.
This means that almost all statements Sx,N are true.

To prove Godel’s theorem, suppose there is some finite set of ax-
ioms A. Consider the following program MN :

• Enumerate over all pairs (x, α), where x ∈ {0, 1}∗, α ∈ {0, 1}∗. If α

describes a proof of Sx,N using the axioms A, output x.

If the finite set of axioms were complete, MN would always halt,
since it would find some string x and a proof α proving Sx,N . But
the program MN can be described using just O(log N) bits, and it
outputs a string x for which K(x) > N. For N large enough, this is a
contradiction, and so A must be incomplete.

lecture 2: turing machines, counting arguments, diagonalization, incompleteness,
complexity classes 9

Complexity Classes

let us talk complexity classes. We are interested in classifying functions
according to their complexity, so it makes sense to lump functions
into sets of similar complexity:

Definition 17. Define DTIME(t(n)) to be the set of functions

DTIME(t(n)) = { f : {0, 1}∗ → {0, 1}| f is computable in time O(t(n))}.

Similarly,

Definition 18. Define DSPACE(s(n)) to be the set

DSPACE(s(n)) = { f : {0, 1}∗ → {0, 1}| f is computable in space O(s(n))}.

Once we have these definitions, we can try to define what it means
for a function f : {0, 1}∗ → {0, 1} to be efficiently computable. A
reasonable definition of efficient computation should allow enough
time to read all of the input, which takes Ω(n) time. So we should
definitely include DTIME(n) in our set of efficiently computable
functions. Further, if one algorithm calls another as a subroutine, and
both are efficient, we would like to say that the combined algorithm
is also efficient. The minimal class satisfying these assumptions is the
class

Definition 19. P =
⋃

c≥1 DTIME(nc).

Of course there is a whole spectrum of classes above P. For exam-
ple:

Definition 20. EXP =
⋃

c≥1 DTIME(2nc
).

And,

Definition 21. E =
⋃

c≥1 DTIME(2cn).

For space bounded computation, we need to have enough space to
manipulate pointers into the inputs, which takes log n bits, before we
get interesting classes. The first such class is:

Definition 22. L = DSPACE(log n).

Definition 23. PSPACE =
⋃

c≥1 DSPACE(nc).

Obviously if t(n) = O(t′(n)), then DTIME(t(n)) ⊆ DTIME(t′(n)).
But is the containment strict? Does giving a Turing Machine more
time actually allow it to compute things that it cannot compute with-
out the extra time?

	Resources of Turing Machines
	Robustness of the model: Extended Church-Turing Thesis
	Lower bounds—Counting arguments
	Diagonalization
	Complexity Classes

