
Lecture 3: Hierarchy Theorems
Anup Rao

October 11, 2023

In the last lecture, we showed that there are natural functions
that cannot be computed by Turing machines. To do this, we used the
technique of diagonalization. In this lecture, we shall combine diag-
onalization with the universal simulation ability of Turing machines
to show that Turing machines with more time/space are strictly more
powerful than Turing machines with less time/space.

We are going to use diagonalization to show that Turing Machines
that have more time can compute things that are not computable by
Turing Machines with less time. Such a result is called a hierarchy
theorem, it shoes that there is a hierarchy of power that comes with
increasing computational resources. The basic idea is that a Turing
Machine with more resources can simulate every machine that re-
quires fewer resources and do the opposite of what it does on some
input. To formally prove the hierarchy theorems, we need some more
concepts:

Definition 1 (Time Constructible Functions). We say that the map
t : N → N is time constructible if t(n) ≥ n and on input x there is a
Turing Machine that computes t(|x|) in time O(t(|x|)).

Almost every running time or space bound you can think of like
n5, 2n, 22n

is time constructible and space constructible. (But not all
functions are time constructible, since not all functions can be com-
puted by turing machines). We shall also need a result about simu-
lating turing machines by Turing Machines, that we discussed in the
third lecture:

Theorem 2. There is a turing machine M such that given the code of any
Turing machine α and an input x as input to M, if α takes T ≥ 1 steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We are now ready to prove our first hierarchy theorem:

Theorem 3 (Time Hierarchy). If r, t are time-constructible functions
satisfying r(n) log r(n) = o(t(n)), then DTIME(r(n)) ⊊ DTIME(t(n)).

Proof Recall that Mα denotes the Turing Machine whose code is α.
The key idea is to use a function very similar to the one we defined

lecture 3: hierarchy theorems 2

in the last lecture for our diagonalization proofs:

f (α) =

1 if Mα(α) halts and outputs 0 after t(|α|) steps of the simulator,

0 else.

We claim:

Claim 4. f can be computed in time O(t(n)).

To compute f , we first compute t(|α|) and then apply Theorem
2 to simulate Mα(α) for t(|α|) steps of the simulator. So, f can be
computed in time O(t(n)).

On the other hand, we shall show:

Claim 5. f cannot be computed in time O(r(n)).

If β is the code of a machine that computes f in time c · r(n). Let
Cβ be such that the execution of r steps of the machine Mβ can be
simulated in Cβr log r steps by the universal machine. Then there
must be some binary string β′ that represents the same machine as β,
but is long enough so that

t(|β′|) > Cβ · c · r(|β′|) log r(|β′|)

This is because by assumption r(n) log r(n) = o(t(n)), and so for
large enough n,

t(n) > 2Cβ · c · r(n) log(c · r(n)) > Cβ · c · r(n) log(c · r(n)).

Moreover, we can always add redundant lines to the code in β, until
the code becomes long enough for t(|β′|) > 2Cβ · c · r(|β′|) log r(|β′|).

If Mβ(β′) = 0, then Mβ′(β′) = 0 and so f (β′) = 1 by the guarantee
of Theorem 2. If Mβ(β′) = 1, Mβ′(β′) = 1, and so f (β′) = 0, which
proves that Mβ does not compute f .

Similarly, one can prove a Space hierarchy theorem:

Definition 6 (Space Constructible Functions). We say that the map
s : N → N is space constructible if s(n) ≥ log n and on input x there is
a Turing Machine that computes s(|x|) in space O(s(|x|)).

We saw in lecture 3 that:

Theorem 7. There is a turing machine M such that given the code of any
Turing machine α and an input x as input to M, if α takes S ≥ log |x| space
to compute an output for x, then M computes the same output in O(CS)
space, where here C is a number that depends only on α and not on x.

One can prove the following space hierarchy theorem:

lecture 3: hierarchy theorems 3

Theorem 8 (Space Hierarchy). If q, s are space-constructible functions
satisfying q(n) = o(s(n)), then DSPACE(q(n)) ⊊ DSPACE(s(n)).

We leave out the details, since they are exactly the same as the
previous result.

As a consequence of these hierarchy theorems we get:

Corollary 9. P ̸= Exp.

Proof On the one hand, P ⊆ DTIME(nlog n). On the other hand, by
Theorem 3, DTIME(nlog n) ̸= DTIME(2n), since nlog n = o(2n).

Hierarchy Theorem for Circuits

We define the class SIZE(s(n)) to be the set of functions f : {0, 1}∗ →
{0, 1} that can be computed by circuit families of size s(n).

We have proved the following theorems:

Theorem 10. Every function f : {0, 1}∗ → {0, 1} is in SIZE(O(2n/n)).

Theorem 11. For every large enough n, there is a function f : {0, 1}n →
{0, 1} that cannot be computed by a circuit of size 2n/3n.

We can use this theorem to prove a hierarchy bound for size.

Theorem 12. There is a constant c such that for every functions s(n), s′(n)
satisfying 2n/n > s′(n) > cs(n) > n, we have that SIZE(s(n)) ⊊
SIZE(s′(n)).

Proof Suppose every function on n bits can be computed using a
circuit of size k2n/n. Set c = 3k. Let ℓ be such that k2ℓ/ℓ = s′(n).
Then every function on ℓ bits can be computed by a circuit of size
s′(n). On the other hand, there is some function on ℓ bits that cannot
be computed using a circuit of size 2ℓ/3ℓ = s′(n)/c, as required.

NP

In the last class, we introduced the concept of complexity classes.
We saw the classes P, L, E, EXP and PSPACE. These classes were Recall: L ⊆ P ⊆ PSPACE ⊆ EXP.

obtained by considering functions that can be computed with limited
time or limited space. Today, we explore a different kind of class, the
class NP.

NP is interesting chiefly because many problems that we would
like to solve efficiently with a computer, but cannot solve, belong
to NP. The list of such problems includes essentially all problems

lecture 3: hierarchy theorems 4

solved today with machine learning, and many other practically
important problems. Before giving the definition of NP, let us see
some examples of problems in NP.

Independent Set Given a graph G and a number k, does the graph
have an independent set of size k? Let ISet(G, k) = 1 if the graph
has an independent set, and 0 otherwise. Recall that an independent set is a set of

nodes that does not contain any edges.
Subset sum : Given a list of numbers a1, . . . , aℓ, t, is there some subset

of the numbers a1, . . . , aℓ that sums to t? Let SubSum(a1, . . . , aℓ, t) =
1 if there is such a subset, and 0 otherwise.

Composite numbers : Given a number N, decide if it is composite or
not. Let Comp(N) = 1 if N is composite, and 0 otherwise.

Matching : Given a graph G and a number k, are there k disjoint
edges in the graph? Let Match(G, k) be 1 if there are k such edges,
and 0 otherwise.

All of these problems have something in common: although it
may be hard to efficiently compute the functions they define, it is
very easy to check a solution if one is given to us! For example, if
ISet(G, k) = 1, then there is a an independent set S of size k, and
given G, S, k, one can check that S is an independent set of size k in
polynomial time. Similarly, if SubSum(a1, . . . , aℓ, t) = 1, then there is
a subset of the numbers S ⊆ {a1, . . . , aℓ}, that if given as input can be
verified to have the sum t.

NP is the class of all functions f that have the above property,
where if f (x) = 1, then this can be checked efficiently by an efficient
verifier:

Definition 13. f : {0, 1}∗ → {0, 1} is in NP if there exists a polynomial p
and a polynomial time machine V such that for every x ∈ {0, 1}∗,

f (x) = 1 ⇔ ∃w ∈ {0, 1}p(|x|), V(x, w) = 1
The witness w is restricted to being
of polynomial length to ensure that
the running time of V is actually
polynomial in the length of x. If we
allowed the witness to be arbitrarily
long, then V would be allowed to run
very long computations on x.

V is usually called the verifier and w is usually called the witness
or certificate or proof. For example, in the independent set problem
above, the witness w would correspond to an independent set, and
the verifier V would be the program that checks that w is in fact an
independent set of size k in the input graph.

Many important combinatorial optimization problems can be cast
as problems in NP.

P, NP and EXP

Fact 14. P ⊆ NP ⊆ EXP.

lecture 3: hierarchy theorems 5

To see the first containment, observe that if f ∈ P, there is a poly-
nomial time Turing machine M with M(x) = f (x). But M itself is a
verifier for f (with a witness of length 0) proving that f ∈ NP.

For the second containment, if f ∈ NP, then f has a verifier
V(x, w). Consider the algorithm that on input x runs over all possible
w and checks if V(x, w) = 1. If any witness makes V(x, w) = 1, the
algorithm outputs 1, otherwise it outputs 0. This algorithm computes
f and runs in exponential time, so f ∈ EXP.

Nondeterministic Machines, and a Hierarchy Theorem

The original definition of NP was by considering Turing machines
that are allowed to make non-deterministic choices: namely after
each step, the machine is allowed to make a guess about which state
to transition to in the next step. The machine computes 1 if there is a
single accepting computational path, and 0 otherwise.

We can define NTIME(t(n)) in the same way as DTIME(t(n)), it
is the set of functions computable by non-deterministic machines in
time O(t(n)), and then you can check that NP =

⋃
c NTIME(nc). Just

as for deterministic time, there is a non-deterministic time hierarchy
theorem:

Theorem 15. If r, t are time-constructible functions satisfying r(n + 1) =
o(t(n)), then

NTIME(r(n)) ⊊ NTIME(t(n)).

Polynomial time Reductions

One of the central questions in complexity theory is whether or not
P = NP. Although we don’t know the answer to this question, we
can prove a lot about the class NP, via the concept of polynomial
time reductions:

Definition 16. A function f is polynomial time reducible to a function g if
there is a polynomial time computable function h such that f (x) = g(h(x)).
We write f ≤P g.

Note that the above definition is not the only one that makes
sense. In general it makes sense to allow our reductions to make
multiple calls to the problem being reduced to. However, we will be
able to prove many of our results using the stronger notion above, so
that is what we shall use.

Definition 17. We say f is NP-hard if g ≤P f for every g ∈ NP. We say
f is NP-complete if f is NP-hard and f ∈ NP.

Theorem 18. Here are some easy facts that one can prove about reductions:

lecture 3: hierarchy theorems 6

• If f ≤P g and g ≤P h, then f ≤P h.

• If f is NP-hard and f ∈ P, then P = NP.

• If f is NP-complete, then P = NP if and only if f ∈ P.

NP-complete problems

The above definitions make sense because we do know of examples
of NP-complete problems.

Circuit-Sat

Definition 19. CircuitSat : {0, 1}∗ → {0, 1} is the function that views its
input as a circuit C and outputs 1 iff ∃x such that C(x) = 1.

I have claimed in class that circuits can simulate Turing Machines.
Here is what you can actually prove in this regard:

Theorem 20. If a function f : {0, 1}∗ → {0, 1} can be computed in
time t(n) by a Turing machine, then for every n there is a circuit of size
O (t(n) log t(n)) that computes f restricted to the inputs of size n.

Although we did not prove this theorem in class, we sketched
how you could find a circuit of size O(t(n)2) that computes f . The
idea was to add a layer of gates that maintains the entire state of the
Turing machine—contents of all tapes, pointers, and the line of code
being executed. Then we add a new layer that computes this con-
figuration after one execution step of the Turing machine, using the
earlier configuration as input. A single configuration can be written
down using O(t(n)) gates since we only need to write down the val-
ues of the tapes up to O(t(n)) coordinates. The new configuration
can be computed from the old one with O(t(n)) gates as well. After
repeating this O(t(n)) times, we obtain the final configuration of the
Turing machine, which must include the value of f (x).

Theorem 21. CircuitSat is NP-complete.

Proof It is clear that CircuitSat is in NP. Next we show that for
every f ∈ NP, f ≤P CircuitSat. Let V be a verifier for f . Then to
compute f (x), the reduction will build the circuit Cx(w) that com-
putes V(x, w), where here w are the input variables to the circuit
and x is the input. Since f (x) = 1 if and only if there exists w such
that Cx(w) = 1, we can determine the value of f by computing
CircuitSat(Cx).

lecture 3: hierarchy theorems 7

3SAT

A boolean formula is an expression of the form

(x1 ∧ ¬x2) ∨ (x7 ∧ ¬(x6 ∨ ¬x2)).

Formally: it is a circuit where the only allowed gates are ∨,∧,¬,
and every gate has fan-out at most 1. Input gates are allowed to
repeat. As usual, size of the gates is number of gates, and the fan-in
is allowed to be at most 2. The formula is said to be in conjunctive
normal form (CNF) if it is an AND of OR’s. Similarly, it is said to
be in disjunctive normal form (DNF) if it is an OR of ANDS. For
example

(x1 ∨ ¬x2) ∧ (¬x7 ∨ x9 ∨ ¬x1)

is a CNF.
We have the following lemma:

Lemma 22. Every function f : {0, 1}ℓ → {0, 1} can be computed by a
CNF (resp. DNF) of size ℓ2ℓ.

Proof For each input z such that f (z) = 0, we add the literal xi to
the clause if zi = 0 and ¬zi otherwise. So for example, if f (0, 1, 0) =
0, we add the clause (x1 ∨ ¬x2 ∨ x3). Then note that each clause is 0
on exactly one input, and all inputs x for which f (x) = 0 make some
clause 0. Every other input evaluates to 1. So, the CNF computes f .
The resulting formula is of size ℓ2ℓ. The case of DNF’s is symmetric.

We define SAT : {0, 1}∗ → {0, 1} to be the function that takes as
input a boolean formula F, and outputs 1 if and only if there is a an
x such that F(x) = 1. A 3-CNF formula is a CNF where every clause
has at most 3 variables. For example:

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∨ x4 ∨ ¬x1) ∧ · · · .

3SAT : {0, 1}∗ → {0, 1} is the function that takes as input 3-CNF and
outputs 1 if and only if the formula is satisfiable. Next we show that
even this function is NP-complete Is the same true for 2SAT? We do

not know. There are polynomial time
algorithms for 2SAT, so if you found
a reduction to 2SAT, you would prove
P = NP. The algorithm works by
viewing every clause (x ∨ y) as an
implication ¬x ⇒ y as well as the
implication ¬y ⇒ x. This defines a
directed graph where all the vertices
correspond to variables and their
negations, and the edges correspond
to implications. You can show that the
formula is satisfiable if and only if there
is no path that leads from a variable to
its negation.

Theorem 23. 3SAT is NP-complete.

Proof 3SAT ∈ NP is easy enough to check. The witness is a sat-
isfying assignment to the formula. The verifier simply evaluates the
formula on the given witness, and outputs the results of the evalua-
tion.

Since we have already shown that CKT− SAT is NP-hard, it will
be enough to show that CKT− SAT ≤P SAT.

lecture 3: hierarchy theorems 8

Given a circuit, we shall output a CNF formula that is satisfiable if
and only if the circuit accepts some input. Introduce a new variable
yg for each internal gate g of the circuit. If the internal gate g has
inputs h, q, let Fg be the CNF formula on variables yg, yh, yq that is 1 if
and only if yg = g(yq, yh). By Lemma 22, this formula is a 3-CNF of
constant size. If the output gate is v, the final formula is

yv ∧
∧
g

Fg,

which is satisfied if and only if the circuit has a satisfying assign-
ment.

Every clause of this formula has at most 3 variables. To make sure
it has exactly 3 variables, we replace each clause with less than 3 vari-
ables with a 3-CNF that by adding dummy variables. For example,
we can replace yv by a 3-CNF on the variables yv, z1, z2 that computes
the same function as yv:

(yv ∨ z1 ∨ z2) ∧ (yv ∨ ¬z1 ∨ z2) ∧ (yv ∨ ¬z1 ∨ ¬z2) ∧ (yv ∨ z1 ∨ ¬z2).

	NP
	P, NP and EXP
	Nondeterministic Machines, and a Hierarchy Theorem
	Polynomial time Reductions
	NP-complete problems
	 3SAT

