Lecture 4: NP-complete problems and Space com-
plexity
Anup Rao

October 19, 2023

IN THE LAST cLASs, we introduced the concept of NP and NP-
completeness and showed that 35AT is NP-complete. In this lecture,
we begin by showing that many other problems are NP-complete.

3 Coloring

We say that an undirected graph is 3 colorable if one can color every
vertex with one of 3 colors so that every edge gets two colors.

1 if G is 3 colorable

0 otherwise.

3COL(G) = {

Although there is an easy polynomial time algorithm for 2-coloring
a graph (greedily color the first vertex blue, all its neighbors red, all
their neighbors blue and so on), we know of no such algorithm for
3-coloring a a graph.

Theorem 1. 3COL is NP-complete.

Sketch of Proof The coloring serves as a witness that can be veri-
fied in polynomial time, so 3COL € NP. Next we show how to reduce
3SAT to 3COL in polynomial time.

Figure 1: Ensuring that a coloring
corresponds to a truth assignment

We would like to construct the graph in a way that allows every
coloring to be decoded to an assignment to the variables. To this end,
we shall have three vertices named T, F, B and 2n vertices named

LECTURE 4: NP-COMPLETE PROBLEMS AND SPACE COMPLEXITY 2

X1,%1,X2,X2,...,Xy, X, that correspond to the variables and their
negations. We shall connect every pair of T, F, B so that these three
must be given a distinct color. We also connect each x; and X; to B, so
x; and X; must be given the same as color as T or F. In addition, con-
nect each x; and X; to ensure that they are assigned the same color.
(See Figure 1). Thus any coloring corresponds to an assignment of
truth values to the variables.

Figure 2: Ensuring that the assignment
satisfies each clause

Cj:.’ﬂl \/fg\/itg

N7 N @
My initial drawing in class had an

Next we need to encode each clause of the formula. The idea here error!
is generate a part of the graph that can be colored if and only if the
clause is satisfied by the assignment to the corresponding variables.
This is shown in Figure 2. We connect the gadget shown there to the
variables that correspond to the clause we are interested in. If any
one of the variables is set to T, then one can color the corresponding
vertex in the top row FE. This allows us to color the bottom row.

On the other hand, if all variables in the clause are false, then the
top row must be colored B, and the bottom row cannot be colored

correctly.
[|

Independent Set

Given an undirected graph G, an independent set in the graph is a set
of vertices such that no edge is contained in the set. The goal is find
an independent set of maximum size in the graph. We can encode
this problem using the following boolean function:

1 if G has an independent set of size k,
ISET(G, k) =
0 otherwise.

If you can compute ISET in polynomial time, then you can find the
largest independent set in polynomial time (how?). If on the other
hand you can find the largest independent set, then you can also
compute ISET. Here we prove:

LECTURE 4: NP-COMPLETE PROBLEMS AND SPACE COMPLEXITY 3

Theorem 2. ISET is NP-complete.

Proof ISET is in NP, since the independent set of largest size is
itself a witness which can be verified in polynomial time. Thus it
only remains to show that ISET is NP-hard. To do this, we show how
to reduce 3SAT to ISET in polynomial time.

Given a 3SAT instance with m clauses and 7 variables, we con-
struct a graph with 3m variables. Each clause C; corresponds to 3 ver-
tices, which are all connected to each other. Thus the graph contains
m disjoint triangles. In each triangle, we label each of the three ver-
tices with the three literals that occur in the clause. Thus the clause
(aV —bV c) leads to the three vertices being labeled a, —b, c. Finally,
for every variable a, we connect every vertex labeled a to every vertex

labeled —a using an edge.

Figure 3: An example of the input to
ISET produced when the input formula
is(avbV-c)A(mdVeVe)A(=fV
if and only if the given 3 CNF is satisfiable. Indeed, suppose the 3 —aV=b)A(BVAV—e)AleVaV f).

We claim that the above graph has an independent set of size m

CNF is satisfiable using the assignment to the variables x. Then x
must satisfy every clause, so in each clause, some literal must be
true. Pick a single vertex from each of the triangles in such a way
that we always pick a true vertex. By the construction, every edge
must connect a true vertex to a false vertex, so the resulting set is
independent. There cannot be a larger independent set in the graph,
since every triangle can contain only one vertex.

Conversely, if the graph has an independent set of size m, then
there must be exactly one vertex in every triangle of the construction,
or else one of the triangle edges would be included in the set. Now
pick the assignment to the variables in such a way that all the vertices
of the independent set are labeled with true. There is always a way
to do this, since by construction every time we try to set a variable
in this process, it has not already been set to a different value by the
construction of the graph and the property that the set is indepen-
dent.

Thus the reduction is to read the input formula and construct the
above graph in polynomial time. H

LECTURE 4: NP-COMPLETE PROBLEMS AND SPACE COMPLEXITY

Hamiltonian Path

Given a directed graph G, a Hamiltonian path is a path that visits
every vertex of the graph exactly once. We define the function

1 if G has a Hamiltonian path
HPATH(G) =
0 otherwise.

Theorem 3. HPATH is NP-complete.

Proof Given a path in the graph, one can check in polynomial time
whether or not it is a Hamiltonian path. Thus HPATH € NP using
the path as a witness. Next we show that you can reduce 3SAT to
HPATH, proving that HPATH is NP-hard.

Suppose the formula has # variables and m clauses. We shall con-
struct a graph on (2m + 2)n + 2 vertices that encodes assignments to
the formulas as follows. We start by constructing a graph that will
contain (2m + 2)n vertices named v;j, where i € {1,2,...,n}and j €.
Foreveryiand 1 < j < j+1 < k, we have the edges (v;;,v; ;1)
and (’Ui’j+1, vi,]-). Thus these vertices can be thought of as arranged
in n rows, where in each row the path can go left or right. For every
1 <i<i+1<n, weadd the edges

(Uz‘,1, Uit11), (Ui,lr Oitin), (Ui,n, Oit1,1), (vi,n, Uz‘+1,1)-

Finally we add two special vertices s, t, with edges

(S/ Ul,l)/ (S/ vl,}’l)/ (Un,lz t)/ (v}’l,nr t)

By construction, every Hamiltonian path in the graph must start
at s and end at ¢, and must traverse each row in order. Each row
can be traversed in either left to right or right to left fashion. We
shall imagine that traversing the row left to right corresponds to
assigning the i’th variable the value 0, and traversing it the other way
corresponds to assigning the value 1.

Next we add some vertices to encode the constraints given by the
clauses. Without loss of generality we assume that each clause con-
tains a variable at most once (since we can always reduce the formula
to this case). For the j’'th clause C]-, we add the vertex Cj. For every
variable x; that the clause contains unnegated, we add the edges
(vipj,¢j), (¢j,vi2j—1). For every variable x; that is contained in the
clause as —x;, we add the edges (v;;_1,¢;), (¢}, vi2;). By construc-
tion, any Hamiltonian path that takes the edge (v;2j, ¢;), must take
(¢j, vi2j—1) next, or v; ;1 will never be visited. Similarly, any Hamil-
tonian path that takes the edge (v;), c;) must take (cj, v;2j—1) next.
We claim that the graph has a Hamiltonian path if and only if the
formula is satisfiable.

LECTURE 4: NP-COMPLETE PROBLEMS AND SPACE COMPLEXITY 5

(avbvVv —c)
(/‘/.

el

0a0gtgesone
toaao Pe008080000000 ¢
0008080800080 08000 d
2000504000 U00S0R0008 0
S5 0a0000080a0I0)00N0Re

!

SSSuSse:;S

-

(A

o
l.\

/1

I
7R

Q)

Figure 4: An example showing how
to generate a directed graph for the

Indeed, if the formula is satisfiable, then traverse each row in the Hamiltonian path problem using a
direction corresponding to the satisfying assignment. Since each single clause from the formula.
clause is satisfied by some variable, we can visit the vertex for the
clause when we traverse the first variable that satisfies it. Conversely,
if there is a Hamiltonian path, then the construction ensures that this
path corresponds to an assignment to the variables, and this path
must visit every clause vertex, which guarantees that each clause

vertex is satisfied by some variable. H

Subset Sum

In the subset sum problem, the input is a collection of numbers
ai,...,ax, as well as a target number f. The goal is compute whether

or not some subset of the numbers a1, .

SubSum(ay, ..., ax,t)

1 if there is a subset S C {1,2,

0 otherwise.

Theorem 4. SubSum is NP-complete.

We sketch the proof. SubSum is in NP, since there is an obvious
polynomial time computable verifier for the problem. The witness is
a subset S, and the verifier simply checks that } ;.5 a; = ¢, which can

be done in polynomial time.

To show that SubSum is NP-hard, we shall show that

LECTURE 4: NP-COMPLETE PROBLEMS AND SPACE COMPLEXITY 6

..,d sums to t.

...,n}such that) ;cqa; =t,

Example: suppose we are given the
formula (x1 V —xp Vx3) A (mx V X3 V
X4) A (ﬁxl, V—x3 V ﬁX4) vV (ﬁXz,\/ﬁX3 V
x4). There are 4 variabels and 4 clauses,
so the polynomial time reduction
will generate 16 numbers, each with
8-digits, and a target number with

3SAT <p SubSum.

We describe the polynomial time reduction next. Given a 3-sat for-
mula ¢, our algorithm needs to output numbers aj, ..
that SubSum(ay, .

Suppose ¢ has n variables and m clauses. Then, we will have k =

., a5 and t such
.., ax,t) = 1if and only if ¢ is satisfiable.

2n 4 2m, and all of the numbers a4, ..., a; and t will be n + m digit
numbers, written in base 10. Moreover, all the digits of a1, ..., a; will
be either 0 or 1, and the numbers will be chosen in such a way that
adding any subset of a1, ..., a; will never produce a carry.

For each variable x; of the formula ¢, we shall have two numbers:
t; and f;. The 7’th digit of ¢; and f; will be set to 1 and all of the re-
maining n — 1 digits in the first n digits will be set to 0. Meanwhile,
in the target number ¢, all of the first n digits will be set to 1. This
choice ensures that choosing any subset of t1, f1,. .., ty, fu that sums
to t corresponds to choosing either ¢; or f; to be included in the set,
for each i. In other words, a subset of these numbers that sums to t
corresponds to a truth assignment to the variables x1, ..., x;.

Next, we need to add more digits to ensure that this truth assign-
ment satisfies all the clauses. For every i, j, if x; occurs in the j'th
clause, we make the n + j’th digit of ¢; 1. If —x; occurs in the j’'th
clause, we make the n 4 j'th digit of f; 1. All other digits (upto the
n + m’th digit) of ¢;, f; are set to 0. This choice ensures that if the sub-
set chosen satisfies the j’th clause, then the j’th digit of the sum will
be either 1,2 or 3. Finally, we add two numbers b}, ¢;, which are 0 in
all digits, except for the j’th digit. The j’'th digit of both numbers is 1.
This ensures that if the j’th clause is satisfied by the assignment, then
one can pick 0,1 or 2 elements of {b]', cj} to add to the subset, so that
the sum of the j’th digits is 3.

Space

8-digits:

t; = 10001000
£, = 10000010
t, = 01000000
f> = 01001101
t3 = 00101100
f3 = 00100011
t4 = 00010101
f4 = 00010010
by = 00001000
c1 = 00001000
by = 00000100
¢z = 00000100
by = 00000010
c3 = 00000010
by = 00000001
¢4 = 00000001

The target number will be:

t =11113333.

LECTURE 4: NP-COMPLETE PROBLEMS AND SPACE COMPLEXITY

NEXT, WE TURN OUT ATTENTION TO SPACE. Recall, that the space
complexity of an execution of a Turing machine is defined to be the
maximum value attained by the pointer to the work tape during the
execution. So, it is just a count of the number of cells used on the
work tape during the execution of the algorithm.

The smallest space class that makes sense is L = DSPACE(logn).
This is because even maintaining a pointer to the input takes log n
work space. While we do not necessarily need to maintain such
pointers in the work tape, if we want to be able to design algorithms
that have the same complexity regardless of the specific choices made
for the Turing machine, then we need to maintain such pointers in
order to simulate one Turing machine by another.

As usual the non-deterministic version of this class is when the
machine can make non-deterministic choices, and is called NL =
NSPACE(logn). There is a subtle issue about the definition of NL: if
we allow the machine to remember the non-deterministic choices that
it made for free (for example by giving it access to a guess tape that
it can read from), then the power of the class changes significantly.
Another interesting class is PSPACE = |J. DSPACE(n°). The corre-
sponding non-deterministic class is actually equal to PSPACE, as we
shall prove below.

A very useful fact when composing space bounded computations
is the following:

Claim 5. If it takes space s1(n) > logn to compute f and space sp(n) >
log n to compute g, then one can compute the composition f(g(x)) in space
O(s1(n) + s2(n))-

The idea is that in the computation of f, every time we need to
lookup an output symbol of g(x), we can recompute it. Thus, as long
as s1(n),sy(n) are enough to store pointers into the output locations,
we actually only need to sum the spaces to compute the composition.

Savitch’s Algorithm

One of the most interesting small space algorithms is Savitch’s graph
search algorithm.

Theorem 6 (Savitch). Given a directed graph G with two special vertices
s, t, there is an algorithm that can compute whether or not there is a path
from s to t in the graph, using space O(log? n).

Proof We shall give a recursive algorithm that can compute the
values A(u,v,i) as defined below:

So far, we have only discussed time
complexity.

For example, if we are designing an
algorithm to add two n-bit integers a, b,
then if a, b are written on two different
tapes (or interleaved on one tape), the
computation can be carried out with
O(1) space. If, on the other hand, the
inputs are written on one tape a,b, then
we need space O(log) in order to
correctly maintain counters to allow us
to scan between the corresponding bits
a; and b;.

LECTURE 4: NP-COMPLETE PROBLEMS AND SPACE COMPLEXITY 8

) 1 if there is a path from u to v of length 2/,
A(u,v,i) =
0 else.

Note that A(u,v,i) = 1 if and only if 3z such that A(u,z,i—1) =1
and A(z,v,i — 1) = 1. Thus, to compute A(u,v,i), do

1. For all z, recursively compute A(u,z,i —1) and A(z,v,i — 1), and
output 1 if both computations result in 1.

2. Otherwise output 0.

If the size of the graph is 2°, there are s + 1 recursive calls, where
A(u,v,0) can be computed trivially by looking up the corresponding
bit in the input. In each recursive call, the algorithm needs to store
only the vertices u, v, z, which takes O(log 1) space. Thus the total
space used is O(log®). B

One reason Savitch’s algorithm is so important is because, in some
sense, graph search is a complete problem for small space computa-
tion. Let us discuss this point next.

Configuration Graphs

Given an input x to a (possibly non-deterministic) Turing machine
M, the configuration graph Gy, is the directed graph where there
is a distinct vertex for every possible value of the pointers to the

input and work tapes, the value of the string written in the work tape

and the current line-number of the line of code that is about to be
executed in the machine. There is an edge from u to v if and only if
the configuration u could possibly become the configuration v after
one step of the program is executed.

Lemma 7. If the machine uses space s(n) > Q(logn), then the number of
vertices in the configuration graph is at most 200(")),

Proof The number of options for locations of the pointers is at
most 7 - s(n). The number of options for the contents of the work
tape is at most 20((")). The number of options for the lines of code is
O(1). Thus, the number of different vertices in the graph is at most
the product of these numbers, which is at most 206(n)) m

The number of options for the pointer
that points to the input tape is at

most n. This is because we do not
allow the pointer on the input tape

to move past the actual input. As we
discussed in class, even if we did not
place this restriction, we can prove that
if the Turing machine moves the input
pointer more than 296(1) steps beyond
the input, then the machine does not
halt. So, even without this restriction,
the number of possible values for the
input pointer is at most 20¢(")),

LECTURE 4: NP-COMPLETE PROBLEMS AND SPACE COMPLEXITY 9

Figure 5: An example of a configuration
graph.
start

output 1

,}) Q output 0

	3 Coloring
	Independent Set
	Hamiltonian Path
	Subset Sum
	Space
	Savitch's Algorithm
	Configuration Graphs

