
Lecture 7: Randomized Complexity Classes, Schwartz-
Zippel and Polynomials
Anup Rao

November 8, 2023

Probability Review

We start by reviewing a couple of useful facts from probability the-
ory.

Lemma 1 (Markov’s inequality). If X is a non-negative random variable,
then Pr[X > ℓ · E [X]] < 1/ℓ.

Proof

E [X] = ∑
k

k · Pr[X = k]

≥ ∑
k>ℓ

(ℓE [X]) · Pr[X = k]

= ℓE [X] · ∑
k>ℓ

Pr[X = k],

proving that Pr[X > ℓ] ≤ 1/ℓ.

We shall need to appeal to the Chernoff-Hoeffding Bound:

Theorem 2. Let X1, . . . , Xn be independent random variables such that
each Xi is a bit that is equal to 1 with probability ≤ p. Then Pr[∑n

i=1 Xi ≥
pn(1 + ϵ)] ≤ 2−ϵ2np/4.

Finally, we need the following trick. Suppose we toss a coin which
has a probability p of giving heads and 1 − p of giving tails. Let H
denote the number of coin tosses before we see heads. Then

Fact 3. E [T] = 1/p.

Proof

E [T] = p · 1 + (1 − p) · (E [T] + 1)

⇒ E [T] = 1 + (1 − p) · E [T]

⇒ E [T] p = 1

⇒ E [T] = 1/p.

lecture 7: randomized complexity classes, schwartz-zippel and polynomials 2

Randomized Classes

There are several different ways to define complexity classes involv-
ing randomness. A turing machine with access to randomness is just
like a normal turing machine, except it is allowed to toss a random
coin in each step, and read the value of the coin that was tossed.

BPP

We say that the randomized machine computes the function f if for
every input x, Prr[M(x, r) = f (x)] ≥ 2/3, where the probability is
taken over the random coin tosses of the machine M. BPP is the set
of functions that are computable by polynomial time randomized
turing machines in the above sense.

RP

We shall say that f ∈ RP if there is a randomized machine that
always compute the correct value when f (x) = 0, and computes the
correct value with probability at least 2/3 when f (x) = 1.

ZPP

Finally, we define the class ZPP to be the set of boolean functions
that have an algorithm that never makes an error, but whose expected
running time is polynomial in n.

Error reduction

The choice of the constant 2/3 in these definitions is not crucial, as
the following theorem shows:

Theorem 4 (Error Reduction in BPP). Suppose there is a randomized
polynomial time machine M, a boolean function f and a constant c such
that Prr[M(x, r) = f (x)] ≥ 1/2 + n−c. There for every constant d, there
is a randomized polynomial time machine M′ such that Prr[M′(x, r) =

f (x)] ≥ 1 − 2−nd
.

Proof of Theorem 4: On input x, the algorithm M′ will run M
repeatedly nk times for some constant k (that we shall fix soon), and
then output the majority of the answers. Let Xi the binary random
variable that takes the value 1 only if the output of the i’th run is
incorrect.

We have that X1, . . . , Xnk are independent random variables, and

lecture 7: randomized complexity classes, schwartz-zippel and polynomials 3

each is equal to 1 with probability at most 1/2 − n−c. Thus,

Pr[∑
i

Xi > nk/2] = Pr[∑
i

Xi > nk(1/2 − n−c)(1/2)/(1/2 − nc)]

≤ Pr[∑
i

Xi > nk(1/2 − n−c)(1 + 2n−c)]

< 2−O(n−2c)nk/8

Set k to be large enough so that this probability is less than 2−nd
.

By brute force search, we can easily prove:

Theorem 5. BPP ⊆ EXP.

Since RP is the same as the set of functions for which a random
witness is a good witness,

Theorem 6. RP ⊆ NP.

Theorem 7. Every function in BPP has polynomial sized circuits.

The above theorem again easily following from the Chernoff-
Hoeffding bound. We can first amplify the error probability so that
the probability of error is less than 2−n. Then by the union bound,
for each input length, there must be some fixed string r such that
M(x, r) = f (x) for each of the 2n choices of x. Then we can use a
circuit to hardcode this r and compute f in polynomial size.

We do not know whether BPP = P and this is a major open ques-
tion. However, there have been some interesting conditional results.
For example, work of Impagliazzo, Nisan and Wigderson has led to
the following theorem:

Theorem 8. If there is some function f ∈ EXP such that for every constant
ϵ > 0, f cannot be computed by a circuit family of size 2ϵn, then BPP = P.

The theorem is interesting because the assumptions don’t seem
to say anything about useful. The assumption is that there is a func-
tion that can be computed by exponential time turing machines but
cannot be computed by subexponential sized circuits. This fact is
cleverly leveraged to derandomize any randomized computation.
The proof of this theorem is outside the scope of this course.

Schwartz-Zippel Lemma

Recall that a polynomial p(x, y, z) is an expression of the form

14x2y5z8 − 3x3 + 17y6z3.

lecture 7: randomized complexity classes, schwartz-zippel and polynomials 4

The degree of the polynomial is the maximum of the sums of the
powers of the variables in any monomial. So in the last example, the
degree is 15.

The Schwartz-Zippel Lemma turns out to be quite useful for ran-
domized algorithms:

Lemma 9. Let p(x1, . . . , xn) be a polynomial of degree d, such that p is
not the 0 polynomial. Let S be any set of numbers, and let a1, . . . , an be n
random numbers drawn from S. Then Pr[p(a1, . . . , an) = 0] ≤ d/|S|.

Proof We prove the lemma by induction on n. When n = 1, the
theorem follows from the fact that any non-zero degree d polynomial
in one variable has at most d roots. Thus p(a) = 0 only when a is a
root, which happens with probability at most d.

For the general case. Let us write the polynomial in the form

p(x1, . . . , xn) = xℓn · q(x1, . . . , xn−1) + r(x1, . . . , xn),

where here r is a polynomial in which the degree of xn is at most
ℓ− 1. So we simply gather all the terms which have maximum degree
in xn.

Now let E1 be the event that p(a1, . . . , an) = 0, and let E2 be the
event that q(a1, . . . , an−1) = 0. Then we have that

Pr[E1] = Pr[E1 ∧ E2] + Pr[E1 ∧ ¬E2]

= Pr[E2] · Pr[E2|E1] + Pr[¬E2] · Pr[E1|¬E2]

≤ Pr[E2] + Pr[E1|¬E2].

By induction, since q is a degree d − ℓ polynomial, Pr[E2] ≤ (d −
ℓ)/|S|. Since after x1, . . . , xn−1 are fixed in ¬E2, we have that p(a1, . . . , an−1, xn)

is a non-zero polynomial of degree ℓ, we have that Pr[E1|¬E2] ≤
ℓ/|S|. Thus Pr[E1] ≤ d/|S|.

Polynomial Identity Testing

One can ask whether there are interesting problems that are known
to be in BPP but not known to be in P. Although there are many ex-
amples of problems for which the fastest algorithms are randomized
(for example, primality testing), there are not so many examples for
which the only known algorithm is randomized. A key such example
is the problem of polynomial identity testing.

We are given an arithmetic circuit (namely a circuit that uses mul-
tiplication and addition gates). The goal is to determine whether the
polynomial computed by the circuit is identically 0. There is a subtle
issue here that needs to be clarified. Note that two different polyno-
mials may compute the same function on a particular set of inputs.

lecture 7: randomized complexity classes, schwartz-zippel and polynomials 5

For example, if the inputs are all binary, then x2
i = xi for any variable

xi. Indeed, if we changed the problem above to ask whether or not
the arithmetic circuit computes the 0 function on binary inputs, then
we obtain an NP-complete problem.

There is a simple randomized algorithm for identity testing. We
pick random integers from a large enough set and evaluate the circuit
on those inputs. If the circuit computes a non-zero polynomial, it can
be shown that the output will be non-zero with high probability. To
actually make this work, we need to make sure that evaluating the
circuit can be done efficiently. Indeed the evaluation can easily com-
pute a number that is as big as 22s

with a circuit of size s, which is
too big to manipulate. It turns out that one can just do all the evalu-
ations modulo a large random prime number p and obtain the same
guarantees.

We do not know how to get a deterministic algorithm for this
problem.

	Probability Review
	Randomized Classes
	Error reduction
	Schwartz-Zippel Lemma
	Polynomial Identity Testing

