
Lecture 8: ZPP = RP ∩ coRP, determinants and
introduction to interactive proofs.
Anup Rao

November 15, 2023

We began the lecture by proving:

Theorem 1. ZPP = RP ∩ coRP.

Proof Suppose f ∈ ZPP, via a randomized algorithm M whose ex-
pected running time is t(n). Consider the algorithm that simulates M
for 10t(n) steps, and outputs 0 if the simulation halts. Then clearly,
the algorithm only makes an error if the correct answer is 1. On the
other hand, the probability that running time of M exceeds 10t(n) is
at most 1/10 (or else the expected running time would exceed t(n).
Thus we obtain an RP algorithm. The same idea (reversing the roles
of 0 and 1) gives a coRP algorithm.

For the other direction, suppose f has an RP algorithm M1 and a
coRP algorithm M0. Then on input x consider the algorithm that al-
ternatively runs M0(x), M1(x), M0(x), . . . until either M1(x) outputs
1, or M0(x) outputs 0. If M1(x) = 1, then it must be that f (x) = 1.
Similarly if M0(x) = 0, it must be that f (x) = 0. In any case, one
of these two algorithms will verify the value of x in an expected con-
stant number of runs.

Next, we discussed polynomial identity testing. The notes for this
are in the previous week’s lecture.

Using polynomials to give fast algorithms for matching

Given a bipartite graph with n vertices on the left and n vertices on
the right, a perfect matching is a set of n disjoint edges. It is a classi-
cal problem in graph algorithms to figure out if a graph has a per-
fect matching. Here we present a randomized algorithm using the
Schwartz-Zippel lemma.

Recall that the determinant of an n × n matrix is a polynomial of
the form

det(M) = ∑
π

sign(π)
n

∏
i=1

Mi,π(i),

where here the sum is over all permutations π : {1, . . . , n} →
{1, . . . , n}, and sign(pi) is one of ±1.



lecture 8: ZPP = RP ∩ coRP, determinants and introduction to interactive proofs. 2

The algorithm is as follows. First define the matrix of variables:

Mi,j =

xi,j if (i, j) is an edge of the graph,

0 otherwise.

Observe that det(M) is the 0 polynomial if and only if the graph has
a perfect matching. So, the algorithm simply sets xi,j to be a random
number in {1, 2, . . . , 100n} and evaluates det(M). If det(M) = 0 we
conclude the graph has no perfect matching. Otherwise we conclude
that the graph does have a perfect matching. Since the degree of the
polynomial is at most n, the probabilty that this algorithm makes an
error is at most 1/100 by the Schwartz-Zippel Lemma.

It turns out that the determinant can be computed in O(log2 n)
circuit-depth, so it can be computed extremely fast in parallel. This
gives a very fast parallel time algorithm for this classic problem.

Interactive proofs

One way to define NP is via the idea of a proof system. NP is the set
of functions f for which there is a polynomial time verifier algorithm
V such that given any x with f (x) = 1, there exists a prover P that
can prove to the verifier that f (x) = 1 by providing a polynomial
sized witness w for which V(x, w) = 1, yet if f (x) = 0, no such
prover exists.

What happens if we allow the verifier to have a longer interactive
conversation? Presumably, giving the verifier the ability to adaptively
ask the prover questions based on his previous responses should
give the verifier more power, and so allow the verifier to verify the
correctness of the value for a larger set of functions. In fact, this
does not give the verifier additional power: for if there is such an
interactive verifier V I for verifying that f (x) = 1, we can design a
non-interactive verifier that does the same job. The new verifier will
demand that the prover provide the entire transcript of interactions
between V I and a convincing prover. The new verifier can then verify
that the transcript is correct, and would have convinced V I . Thus, if f
has an interactive verifier, then f ∈ NP.

The story is more interesting if we allow the verifier to be random-
ized. We say that f ∈ IP if there is a polynomial time randomized
verifier V such that

Completeness For all x, if f (x) = 1, there is an oracle P such that
Prr[VP(x, r) = 1] ≥ 2/3.

Soundness For all x, if f (x) = 0, for every oracle P, Prr[VP(x, r) =

1] ≤ 1/3.



lecture 8: ZPP = RP ∩ coRP, determinants and introduction to interactive proofs. 3

Since any prover can be simulated in polynomial space, if f ∈ IP,
then f ∈ PSPACE. The algorithm for f can just try all possible
sequences of messages from the prover until it finds a sequence of
messages that convinces the verifier, if such a sequence exists.

Theorem 2. IP ⊆ PSPACE.

It is easy to check that allowing the prover to be randomized does
not change the model.

We shall eventually prove that IP = PSPACE (and so IP is
potentially much more powerful than NP).

Example: Graph non-Isomorphism

Two graphs on n vertices are said to be isomorphic if the vertices of
one of the graphs can be permuted to make the two equal.

Consider the problem of testing whether two graphs are not iso-
morphic: the boolean function f such that f (G1 , G2) is 1 if and only
if G1 is not isomorphic to G2. f ∈ coNP, since the prover can just
send the verifier the permutation that proves that they are isomor-
phic. We do not know if f ∈ NP, but it is easy to prove that f ∈ IP.

Here is the simple interactive protocol:

1. The verifier picks a random i ∈ {1, 2}.

2. The verifier randomly permutes the vertices of Gi and sends the
resulting graph to the prover.

3. The prover responds with b ∈ {1, 2}.

4. The verifier accepts if i = b.

If G1 , G2 are not isomorphic, then any permutation of Gi deter-
mines i, so the prover can determine i and send it back. However, if
G1 , G2 are isomorphic, then the graph that the prover receives has
the same distribution whether i = 1 or i = 2, thus the prover can
guess the value of i with probability at most 1/2. Repeating the pro-
tocol several times, the verifier can make the probability of being
duped by a lying prover exponentially small.

A protocol for counting satisfying assignments

We continue to exhibit the power of interaction by showing how it
can be used to solve any problem in PSPACE. Recall that the prob-
lem of computing whether a totally quantified boolean formula is
true is complete for PSPACE, so it will be enough to give an interac-
tive protocol that verifies that such a formula is true.



lecture 8: ZPP = RP ∩ coRP, determinants and introduction to interactive proofs. 4

As a warmup, let us consider the case when we are given a for-
mula of the type ∃x1 , . . . , xn ϕ(x1 , . . . , xn) and want to count the
number of satisfying assignments to this formula. Since the perma-
nent is complete for #P, we can reduce this counting problem to the
computation of the permanent, and then use the interactive protocol
from the last lecture, but let us be more direct.

As in the protocol for the permanent, we shall leverage algebra.
Since polynomials are much nicer to deal with than formulas, let us
try to encode the formula ϕ using a multivariate polynomial. Here is
a first attempt at building such an encoding gate by gate:

• x ∧ y → xy.

• ¬x → 1 − x.

• x ∨ y → x + y − xy.

This encoding gives us a polynomial gϕ that computes the same
value as the formula ϕ, however it is not clear that gϕ can be com-
puted in polynomial time. The problem is the encoding for ∨ gates,
which could potentially double the size of the polynomial obtained
in each step. Instead, we use the more clever encoding:

• x ∨ y → 1 − (1 − x)(1 − y).

This allows us to obtain a polynomial gϕ which can be written down
in time polynomial in the size of ϕ.

Then the task of counting the number of satisfying assignments to
ϕ reduces to computing ∑x∈{0,1}n gϕ(x). Following the ideas used
in the protocol for the permanent, here is a protocol for a verifier that
checks that ∑x∈{0,1}n gϕ(x) = k.

1. Ask the prover for a prime 22n > p > 2n , and check that it is
correct. Reject if k < p. All arithmetic is henceforth done modulo
p.

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the degree n polynomial

f (X) = ∑
x2 ,...,xn∈{0,1}n−1

gϕ(X , x2 , . . . , xn).

4. Check that f (0) + f (1) = k mod p.

5. Pick a random element a ∈ Fp and recursively check that

f (a) = ∑
x2 ,x3 ,...,xn∈{0,1}n−1

gϕ(a, x2 , . . . , xn)



lecture 8: ZPP = RP ∩ coRP, determinants and introduction to interactive proofs. 5

For the analysis, note that f (X) is indeed a degree n polynomial,
since there are at most n gates in the formula ϕ. Thus if

∑
x∈{0,1}n

gϕ(x) = k,

an honest prover can convince the verifier with probability 1.
If ∑x∈{0,1}n gϕ(x) ̸= k, then the if the prover succeeds, it must be

that
f (X) ̸= ∑

x2 ,...,xn∈{0,1}n−1

gϕ(X , x2 , . . . , xn),

for if the prover is honest, he will be caught immediately.
Since f (X), ∑x2 ,...,xn∈{0,1}n−1 gϕ(X , x2 , . . . , xn) are both degree n

polynomials, we have that

Pr
a

 f (a) = ∑
x2 ,...,xn∈{0,1}n−1

gϕ(a, x2 , . . . , xn)

 ≤ n/ p,

so with high probability, the prover is left with trying to prove an
incorrect statement in the next step. By the union bound, the proba-
bility that the prover succeeds in any step is at most n2/ p ≪ 1/3 for
large n.


	Using polynomials to give fast algorithms for matching
	Interactive proofs
	Example: Graph non-Isomorphism
	A protocol for counting satisfying assignments

