
Lecture 9: IP = PSPACE, Balancing Arithmetic
Circuits
Anup Rao

November 27, 2023

A protocol for counting satisfying assignments

We continue to exhibit the power of interaction by showing how it
can be used to solve any problem in PSPACE. Recall that the prob-
lem of computing whether a totally quantified boolean formula is
true is complete for PSPACE, so it will be enough to give an interac-
tive protocol that verifies that such a formula is true.

As a warmup, let us consider the case when we are given a for-
mula of the type ∃x1, . . . , xnϕ(x1, . . . , xn) and want to count the num-
ber of satisfying assignments to this formula. Since the permanent is
complete for #P, we can reduce this counting problem to the compu-
tation of the permanent, and then use the interactive protocol from
the last lecture, but let us be more direct.

Since polynomials are much nicer to deal with than formulas, let
us try to encode the formula ϕ using a multivariate polynomial. Here
is a first attempt at building such an encoding gate by gate:

• x ∧ y → xy.

• ¬x → 1 − x.

• x ∨ y → x + y − xy.

This encoding gives us a polynomial gϕ that computes the same
value as the formula ϕ, however it is not clear that gϕ can be com-
puted in polynomial time. The problem is the encoding for ∨ gates,
which could potentially double the size of the polynomial obtained
in each step. Instead, we use the more clever encoding:

• x ∨ y → 1 − (1 − x)(1 − y).

This allows us to obtain a polynomial gϕ which can be written down
in time polynomial in the size of ϕ.

Then the task of counting the number of satisfying assignments to
ϕ reduces to computing ∑x∈{0,1}n gϕ(x). Following the ideas used in
the protocol for the permanent, here is a protocol for a verifier that
checks that ∑x∈{0,1}n gϕ(x) = k.

1. Ask the prover for a prime 22n > p > 2n, and check that it is
correct. Reject if k < p. All arithmetic is henceforth done modulo
p.

lecture 9: IP = PSPACE, balancing arithmetic circuits 2

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the degree n polynomial

f (X) = ∑
x2,...,xn∈{0,1}n−1

gϕ(X, x2, . . . , xn).

4. Check that f (0) + f (1) = k mod p.

5. Pick a random element a ∈ Fp and recursively check that

f (a) = ∑
x2,x3,...,xn∈{0,1}n−1

gϕ(a, x2, . . . , xn)

For the analysis, note that f (X) is indeed a degree n polynomial,
since there are at most n gates in the formula ϕ. Thus if

∑
x∈{0,1}n

gϕ(x) = k,

an honest prover can convince the verifier with probability 1.
If ∑x∈{0,1}n gϕ(x) ̸= k, then the if the prover succeeds, it must be

that
f (X) ̸= ∑

x2,...,xn∈{0,1}n−1

gϕ(X, x2, . . . , xn),

for if the prover is honest, he will be caught immediately.
Since f (X), ∑x2,...,xn∈{0,1}n−1 gϕ(X, x2, . . . , xn) are both degree n

polynomials, we have that

Pr
a

 f (a) = ∑
x2,...,xn∈{0,1}n−1

gϕ(a, x2, . . . , xn)

 ≤ n/p,

so with high probability, the prover is left with trying to prove an
incorrect statement in the next step. By the union bound, the proba-
bility that the prover succeeds in any step is at most n2/p ≪ 1/3 for
large n.

A protocol for TQBF

To handle checking whether a formula of the type

∃xi∀x2∃x3 . . . ∀xnϕ(x1, . . . , xn)

is true, it is clear that this is equivalent to checking the identity that

∑
x1

∏
x2

∑
x3

. . . ∏
xn

gϕ(x1, . . . , xn) = k > 0.

This is just another polynomial identity, so a first attempt might be
to use a protocol of the following type:

lecture 9: IP = PSPACE, balancing arithmetic circuits 3

1. Ask the prover for a suitably large prime p, and check that it is
correct. Reject if k < p. All arithmetic is henceforth done modulo
p.

2. If n = 1, check the identity by computing it.

3. If n > 1, ask the prover for the polynomial

f (X) = ∏
x2

∑
x3

. . . ∏
xn

gϕ(X , x2 , . . . , xn).

4. Check that f (0) + f (1) = k mod p (or f (0) · f (1) = k mod p
as appropriate.

5. Pick a random element a ∈ Fp and recursively check that

f (a) = ∏
x2

∑
x3

. . . ∏
xn

gϕ(a, x2 , . . . , xn)

There are several problems with this approach. For one thing the
product term can generate the product of 2n terms giving a number k
that is as large as 22n

. So the prover cannot even write down k using
less than 2n bits, which means that the verifier cannot compute with
it in polynomial time. Similarly, the degree of the polynomial f can
be as large as 2n , so the verifier cannot do any computations with it.

In order to handle the first problem, we appeal to the prime num-
ber theorem and the chinese remainder theorems:

Theorem 1 (Prime Number Theorem). Let π(t) denote the number of
primes in [t]. Then

lim
t→∞

π(t)
t/ ln t

= 1.

The theorem says that Θ(1/n) fraction of all n bit numbers are
prime.

Theorem 2 (Chinese Remainder Theorem). If k is divisible by distinct
primes p1 , . . . , pt , then k must be bigger than the product ∏i pi .

Now consider the set of primes in the interval [2n , 210n]. By The-
orem 1 there Θ(210n /n) primes that are less than 210n , but at most
2n of them are less than 2n , so this interval must contain Θ(210n /n)
primes. The product of all these primes is at least (2n)Ω(210n /n) =

2Ω(210n) . Thus, for n large enough, the product is much larger than
∑x1 ∏x2 ∑x3

. . . ∏xn gϕ(x1 , . . . , xn) = k. Recall that k ≤ 22n
.

Thus by Theorem 2, if k > 0, there must be some prime p ∈
[2n , 210n] such that

∑
x1

∏
x2

∑
x3

. . . ∏
xn

gϕ(x1 , . . . , xn) = k ̸= 0 mod p.

lecture 9: IP = PSPACE, balancing arithmetic circuits 4

This allows us to fix the first problem: the verifier can ask the prover
to send this prime and the value of k mod p, and perform all arith-
metic modulo p.

Next we turn to the second issue. While it is true that the polyno-
mials generated in the above proof can have high degree, note that
since we are only interested in evaluating the polynomials we are
working with over inputs that are bits, it never makes sense to raise
a variable to degree more than 1: x2 = x for x ∈ {0, 1}. Thus, we
could ask the prover to work with the polynomial that is obtained
from gϕ by replacing all high degree terms with terms that have de-
gree 1 in each variable. However, we cannot trust that the prover will
be honest, so we shall have to check that the prover does this part
correctly.

Given any polynomial g(X1 , . . . , Xn) define the operator L1 as

L1 g(X1 , . . . , Xn) = X1 · g(1, X2 , . . . , Xn) + (1 − X1) · g(0, X2 , . . . , Xn).

Then note that L1 g takes on the same value as g when X1 ∈ {0, 1}.
Similarly, we can define Li for each i ∈ [n].

Our final protocol is then as follows. In order to prove that

∑
x1

∏
x2

. . . ∏
xn

gϕ(x1 , . . . , xn) ̸= 0,

we shall instead ask the prover to prove that

∑
x1

L1 ∏
x2

L1 L2 ∑
x3

L1 L2 L3 ∏
x4

. . . Ln−1 Ln ∏
xn

gϕ(x1 , . . . , xn) = k ̸= 0 mod p.

In order to describe the protocol, in general we are going to be
trying to prove a statement of the form O1O2Ot gϕ(x1 , . . . , xn) = k
mod p, where Oi is either ∑xi

, ∏xi
or Li for some i. Some of the

variables xi may be set to constants ai during this process, but this
will not change the protocol.

The verifier proceeds as follows:

1. Ask the prover for a prime p ∈ [2n , 210n] and k ∈ [p − 1] such
that

O1O2Ot gϕ(x1 , . . . , xn) = k mod p,

2. If t = 1, check the identity by computing it and terminate the
protocol.

3. If O1 is ∑xi
,

(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gϕ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

lecture 9: IP = PSPACE, balancing arithmetic circuits 5

(b) Check that f (0) + f (1) = k mod p .

4. If O1 is ∏xi
,

(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gϕ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

(b) Check that f (0) · f (1) = k mod p .

5. If O1 is Li , then xi = ai has been set to be a constant.

(a) Ask the prover for the polynomial

f (X) = O2O3 . . . gϕ(x1 , . . . , xi−1 , X , xi+1 , xn),

which is a polynomial of degree at most 2.

(b) Check that ai f (0) + (1 − ai) f (1) = k mod p .

6. Pick a random element a ∈ Fp and recursively check that

f (a) = O2O3 . . . gϕ(x1 , . . . , xi−1 , a, xi+1 , xn)

As before, an honest prover can convince the verifier with proba-
bility 1. On the other hand, a dishonest prover can succeed only by
sending an incorrect polynomial f , and then such a prover will man-
age to convince the verifier with probability at most O(t/ p) ≪ 1/3.

Balancing Arithmetic Circuits

In this section, we finally prove something that I mentioned in
my very first lecture: it is possible to balance every arithmetic circuit.

Homogenization

First, we need the concept of a homogenous polynomial/circuit.
A polynomial is homogenous if all of its monomials have the same
degree. An arithmetic circuit is homogenous if every gate computes
a homogenous polynomial. Given a polynomial f of degree d, we
write f i to denote its i’th homogenous part. So, f = f0 + . . . + fd .

A useful fact is that every circuit can be made homogenous in the
following sense:

Theorem 3. If f is a degree d polynomial that can be computed by a circuit
of size s, then f0 , . . . , fd can all be computed by a homogenous arithmetic
circuit of size O(sd2).

lecture 9: IP = PSPACE, balancing arithmetic circuits 6

Proof The idea of the proof is to compute g0 , . . . , gd for every gate
g in the circuit of size s. If g = u + v, then gi = ui + vi , so the
homogenous parts of g can be computed from the homogenous parts
of u, v. If g = u · v, then gi = u0 · vi + u1 · vi−1 + . . . + ui · vi , so
once again the homogenous parts of g can be computed. All of these
operations may increase the size of the circuit by a factor of O(d2).

The key claim

The key claim we shall make is the following:

Theorem 4. Suppose f (X1 , . . . , Xn) is a degree d homogenous polynomial
computed by a homogenous arithmetic circuit of size s. Then we can express

f =
s

∑
i=1

ui vi ,

where for every i, ui and vi both have degree at least d/3 and at most
2d/3, ui occurs as a gate in the original circuit, and vi can be computed by
the same circuit after replacing some of the gates with the constants 0 or 1.

Balancing

Theorem 4 is extremely powerful. In particular, it implies that one
can compute f using a circuit of depth at most O((log s)(log d)). To
see this, generate a circuit of depth O(log s) that computes f from
inputs ui , vi as above. Then, since each of ui , vi can be computed by
circuits of size s, we can recursively apply the Theorem to these poly-
nomials and continue. In each step, the degree of the polynomials we
are working with drops by a constant factor, so there can be at most
O(log d) steps.

Even if f is not homogenous, we can use Theorem 3 to make a
homogenous circuit computing the homogenous parts of f in size
O(sd2). Then, applying Theorem 4, we obtain a circuit of depth
O((log sd2) + log d) ≤ O((log s + log d) log d) computing the
homogenous parts of f . We can then sum up these parts adding
another O(log d) to the depth to recover f . As a consequence, we
obtain:

Theorem 5. If f is a polynomial of degree d that can be computed using an
arithmetic circuit of size s, then f can be computed by an arithmetic circuit
of depth O((log s + log d) log d).

lecture 9: IP = PSPACE, balancing arithmetic circuits 7

Proving the theorem

Finally, let us turn to proving the theorem. The given circuit
is assumed to be homogenous. In fact, it is no loss of generality to
assume that every gate of the circuit computes a polynomial of de-
gree at most d. This is because if the circuit contains a + gate that
computes the polynomial 0, then we can eliminate that gate. Once
all such gates have been eliminated, we see that every gate computes
a polynomial whose degree is larger than the degrees of its inputs.
Thus, any gate computing a polynomial of degree larger than d can-
not be connected to the output gate, and it can be dropped.

Next we run a process similar to what we have seen when found
a way to balance Boolean formulas. Let a1 , a2 , . . . be a sequence of
gates, where a1 the output gate, and given ai , ai+1 is the gate that
feeds into ai of larger degree (breaking ties arbitrarily). Since the
product of two gates adds the degrees, the degree of the polynomial
computed by ai+1 must be at least 1/2 of the degree of ai . Let ai+1

be the first gate in this sequence with

d/3 ≤ deg(ai+1) ≤ 2d/3.

By construction, we must have ai = ai+1 · b, and the degree of ai

must be greater than 2d/3. Now, imagine replacing the gate ai with
a new variable Y. Let g(X1 , . . . , Xn , Y) denote the output of the cir-
cuit after making this change, so f (X1 , . . . , Xn) = g(X1 , . . . , Xn , ai),
where here ai denotes the polynomial computed by the gate ai .

We claim:

Claim 6. If a gate r in the circuit computing g computes a polynomial
containing the monomial Y · h, then the degree of r in the circuit for f must
be deg(ai) + deg(h).

The claim holds by induction. It is true for the gate ai , and given
that the claim holds for the inputs of r, it must hold for r, since we
have eliminated all gates of the circuit for f that compute the 0 poly-
nomial.

Next, we claim that the degree of Y in g is at most 1. Indeed, if
the circuit ever multiplies a polynomial containing Y with another
polynomial containing Y, then the degree of this gate in the original
circuit has to be at least 4d/3, but there are no such gates, since we
got rid of them in the first step of the proof. Thus, we must have

g = h · Y + q,

for some polynomials h(X1 , . . . , Xn), q(X1 , . . . , Xn).

lecture 9: IP = PSPACE, balancing arithmetic circuits 8

Now, set u1 = ai+1, v1 = h · b. Then we have

f = u1 · v1 + q.

v1 can be computed by considering the path from b to the output
gate, replacing the gate ai by 1, and replacing every polynomial that
is added to this path by 0.

Moreover, q can be computed by substituting Y = 0 in the cir-
cuit computing g. Thus, q must be homogenous and have the same
degree as f (or be 0). Since q can be computed by a circuit of size at
most s − 1, the proof is completed by induction.

	A protocol for counting satisfying assignments
	 A protocol for TQBF
	Balancing Arithmetic Circuits
	Homogenization
	The key claim
	Balancing
	Proving the theorem

