Direct Products in Communication Complexity

Mark Braverman,

Omri Weinstein, Amir Yehudayoff Washington Princeton

Technion

Direct Sums

Direct Sums

Direct Sums

Direct Sums

Direct Products

Random input

Success
Probability
0.9

Direct Products

Success
Random input

Direct Products

Success
Random input

Direct Products

Success
Random input

Communication [Yao]

$\frac{\text { Alice }}{\mathrm{X}}$ public randomness $\mathrm{R} \frac{\mathrm{Bob}}{\mathrm{Y}}$

private
randomness R_{1}

private
 randomness R_{2}

Complexity: \# bits exchanged x, y drawn from some known distribution

Communication [Yao]

$\begin{array}{cc}\text { Alice } & \text { public randomness } R \\ m_{1}\left(X, R, R_{1}\right) & \frac{\text { Bob }}{Y}\end{array}$

private
randomness R_{1}

private
 randomness R_{2}

Complexity: \# bits exchanged x, y drawn from some known distribution

Communication [Yao]

$\begin{array}{cc}\text { Alice } & \text { public randomness } R \\ m_{1}\left(X, R, R_{1}\right) & \frac{\text { Bob }}{Y}\end{array}$

private
randomness R_{1}

Complexity: \# bits exchanged x, y drawn from some known distribution

Communication [Yao]

$\begin{array}{cc}\text { Alice } & \text { public randomness } R \\ m_{1}\left(X, R, R_{1}\right) & \frac{\text { Bob }}{Y}\end{array}$

private
 randomness R_{1}

Complexity: \# bits exchanged x, y drawn from some known distribution

Communication [Yao]

$\begin{array}{cc}\text { Alice } & \text { public randomness } R \\ m_{1}\left(X, R, R_{1}\right) & \frac{\text { Bob }}{Y}\end{array}$

private
 randomness R_{1}

 private randomness R_{2}

Complexity: \# bits exchanged x, y drawn from some known distribution

Applications

- Combinatorial Auctions
- Data Structure Lower Bounds
- VLSI design/Distributed Computing
- Lower bounds for branching programs, pseudorandom generators for space.
- Streaming algorithms

The Question

$\operatorname{suc}(f, C)=$ max success probability for computing f with C bits CC

$$
f^{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=f\left(x_{1}, y_{1}\right), \ldots, f\left(x_{n}, y_{n}\right)
$$

> If $\operatorname{suc}(f, C)<2 / 3$, is $\operatorname{suc}\left(f^{n}, n C\right) \leq 2^{-n / 100} ? ?$

Prior Work

Suppose $\operatorname{suc}(f, C)<2 / 3$, then $\operatorname{suc}\left(f^{n}, T\right) \leq 2^{-n / 100}$, if

- f is disjointness [Klauck]
- f has small discrepancy [Shaltiel, Lee-Shraibman-Spalek, Sherstov] or a smooth rectangle bound [Jain-Yao]
- T < C [Pernafez-Raz-Wigderson]
- protocol has few rounds [Jain-Pereszlenyi-Yao, Molinaro-Woodruff-Yaroslavtsev]

Our Results

Our Results

Theorem (product distributions): If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{\mathrm{n}}, \mathrm{nC} / \operatorname{polylog}(\mathrm{nC})\right) \leq 2^{-\mathrm{n} / 100}$.

Theorem (arbitrary distributions): If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{\mathrm{n}}, \mathrm{n}^{1 / 2}(\mathrm{C}-\mathrm{k}) /\right.$ polylog $\left.(\mathrm{nC})\right) \leq 2^{-n / 100}$.
$\mathrm{k}=$ \# bits in output of f

Our Results

Theorem (product distributions):

If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{\mathrm{n}}, \mathrm{nC} / \operatorname{polylog}(\mathrm{nC})\right) \leq 2^{-\mathrm{n} / 100}$.

$$
\leq 2 / 3[B B C R]
$$

Theorem (arbitrary distributions): If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{\mathrm{n}}, \mathrm{n}^{1 / 2}(\mathrm{C}-\mathrm{k}) /\right.$ polylog(nC))$\leq 2^{-n / 100}$.
$k=$ \# bits in output of f

$$
\leq 2 / 3[B B C R]
$$

Rest of the Talk

Theorem (uniform distribution): If $\operatorname{suc}(f, C)<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{\mathrm{n}}, \mathrm{nC} / \operatorname{polylog}(\mathrm{nC})\right) \leq 2^{-\mathrm{n} / 100}$.

$k=\#$ bits in output of f

Rest of the Talk

Theorem (uniform distribution): If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(f(\mathrm{f}, \mathrm{nC} /\right.$ polylog $(\mathrm{nC})) \leq 2^{-n / 100}$.

$$
\leq 2 / 3[B B C R]
$$

Theorem (arbitrary distributions):
If $\operatorname{suc}(f, C)<2 / 3$, then
$\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{n}^{1 / 2}(\mathrm{C}-\mathrm{k}) /\right.$ polylog $\left.(\mathrm{nC})\right) \leq 2^{-n / 100}$.
$k=$ \# bits in output of f

Proof by Reduction

Alice nC bits $\underline{B o b}$

$f^{\prime}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$

Theorem [BBCR]: If

 $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{\mathrm{n}}, \mathrm{nC}\right) \leq 2 / 3$.
Proof by Reduction

Theorem [BBCR]: If

 $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2 / 3$.
Proof by Reduction

Examples

Suppose X_{1}, \ldots, X_{n} are n uniform bits

$X_{1}, \ldots, X_{n} \xrightarrow{\text { Alice }} \xrightarrow[X_{1}, X_{3}, X_{4}]{X_{1}} \xrightarrow{\text { Bob }} \xrightarrow[\text { information }]{\text { uniform bits }} \xrightarrow{\text { Bob }}$

Examples

Suppose X_{1}, \ldots, X_{n} are n uniform bits

$X_{1}, \ldots, X_{n} \xrightarrow{\text { Alice }} \xrightarrow{X_{2}, X_{3}, X_{4}} \xrightarrow{\text { Bob }} \quad \stackrel{\text { Alice }}{X_{1}} \xrightarrow{\text { uniform bits }}$ Bob

Alice \quad Bob
$\left.X_{1}, \ldots, X_{n}^{\text {parity }\left(X_{1}, \ldots, X_{n}\right.}\right)$

Alice
Bob X_{1}

0 information

Examples

Suppose X_{1}, \ldots, X_{n} are n uniform bits

$X_{1}, \ldots, X_{n} \xrightarrow{\text { Alice }} \xrightarrow{X_{2}, X_{3}, X_{4}} \xrightarrow{\text { Bob }} \quad \stackrel{\text { Alice }}{X_{1}} \xrightarrow{\text { uniform bits }}$ Bob

Alice
$X_{1}, \ldots, X_{n}^{\text {parity }\left(X_{1}, \ldots, X_{n}\right.}{ }^{\text {B }}$

Alice uniform bits $\underline{B o b}$ X_{1}

Alice
$X_{1}, \ldots, X_{n}^{\text {majority }(}\left(X_{1}, \ldots, X_{n}\right)$

Alice
Bob $\mathrm{X}_{1} \xrightarrow[1 / n \text { information }]{\text { majority } \mid x_{1}}$

Information [Shannon]

$$
\mathrm{I}(\mathrm{~A} ; \mathrm{B})=\underset{p(a, b)}{\mathbb{E}}\left[\log \frac{p(a \mid b)}{p(a)}\right]
$$

If A, B - random variables $p(a, b)$ - joint distribution

Information [Shannon]

Example:
(A, B) - random edge in d-regular graph on n vertices

$$
\mathrm{I}(\mathrm{~A} ; \mathrm{B})=\underset{p(a, b)}{\mathbb{E}}\left[\log \frac{p(a \mid b)}{p(a)}\right]=\log \frac{1 / d}{1 / n}=\log \frac{n}{d}
$$

Properties of Info

$$
\mathrm{I}(\mathrm{~A} ; \mathrm{B} \mid \mathrm{C})=\mathrm{E}_{c}[\mathrm{I}(\mathrm{~A} ; \mathrm{B} \mid \mathrm{C}=\mathrm{C})]=\underset{p(a, b, c)}{\mathbb{E}}\left[\log \frac{p(a \mid b c)}{p(a \mid c)}\right]
$$

$$
\mathrm{I}\left(\mathrm{~A}_{1} \mathrm{~A}_{2} ; \mathrm{B}\right)=\mathrm{I}\left(\mathrm{~A}_{1} ; \mathrm{B}\right)+\mathrm{I}\left(\mathrm{~A}_{2} ; \mathrm{B} \mid \mathrm{A}_{1}\right)
$$

If D is a T-bit string, $\mathrm{I}(\mathrm{C} ; \mathrm{D}) \leq \mathrm{T}$

Information Cost

External information: I(XY;M)

Information Cost

External information: $\mathrm{I}(\mathrm{XY} ; \mathrm{M}) \leq \mathrm{T}$

Low Info Protocol

$\underset{\substack{X_{1}, \ldots, X_{n} \\ f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)}}{\substack{\text { Alice }}} \stackrel{n}{Y_{1}, \ldots, Y_{n}}$

Low Info Protocol

$$
\begin{aligned}
& \underset{X_{1}, \ldots, X_{n}}{\substack{\text { Alice } \\
f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)}} \xrightarrow{\text { nC bits }} \underset{Y_{1}, \ldots, Y_{n}}{\text { Bob }} \\
& n C \geq I\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n} ; M\right) \\
& =\mathrm{I}\left(\mathrm{X}_{1} \mathrm{Y}_{1} ; \mathrm{M}\right) \\
& +\mathrm{I}\left(\mathrm{X}_{2} \mathrm{Y}_{2} ; \mathrm{M} \mid \mathrm{X}_{1} \mathrm{Y}_{1}\right) \\
& +\mathrm{I}\left(\mathrm{X}_{3} \mathrm{Y}_{3} ; \mathrm{M} \mid \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2}\right)+\ldots
\end{aligned}
$$

Low Info Protocol

$$
\begin{aligned}
& \underset{X_{1}, \ldots, X_{n}}{\substack{\text { Alice } \\
f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)}} \xrightarrow{n C \text { bits }} \underset{Y_{1}, \ldots, Y_{n}}{\text { Bob }} \\
& n C \geq I\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n} ; M\right) \\
& =I\left(X_{1} Y_{1} ; M\right) \\
& +\mathrm{I}\left(\mathrm{X}_{2} \mathrm{Y}_{2} ; \mathrm{M} \mid \mathrm{X}_{1} \mathrm{Y}_{1}\right) \\
& +\mathrm{I}\left(\mathrm{X}_{3} \mathrm{Y}_{3} ; \mathrm{M} \mid \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2}\right)+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { For average } \mathrm{i}^{\prime} \\
& \mathrm{C} \geq \mathrm{I}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} ; \mathrm{M} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{i}-1}\right)
\end{aligned}
$$

Low Info Protocol

Alice nC bits Bob
$X_{1}, \ldots, X_{n} \xrightarrow[f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)]{\underset{Y_{1}}{M}} \underset{Y_{1}, \ldots, Y_{n}}{ }$

$$
\mathrm{C} \geq \mathrm{I}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{i} ; \mathrm{M} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1} \mathrm{Y}_{1, \ldots,}, \mathrm{Y}_{\mathrm{i}-1}\right)
$$

publicly sample: $\mathrm{X}_{1,-,, \mathrm{X}_{\mathrm{i}-1}} \mathrm{Y}_{1,-,} \mathrm{Y}_{\mathrm{i}-1}$

Information $\leq C$

Reduction

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

W: event that output is correct

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

W : event that output is correct

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

Challenges:

- M|W is not a protocol, e.g. Alice $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \xrightarrow{\mathrm{M}} \overrightarrow{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}}$ $E: M=h\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$ $\underset{X_{1}, \ldots, X_{n}}{\text { Alice }} \xrightarrow[M]{\mathrm{nC} \text { bits }} \underset{\mathrm{Y}_{1}, \ldots, Y_{n}}{\text { Bob }}$

Simulating $M \mid E$ with a protocol naively requires a lot of communication!

W : event that output is correct

$$
f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)
$$ $f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$

$\frac{\text { Alice }}{X_{i}} \underset{M^{\prime}}{\stackrel{C \text { bits }}{\rightleftarrows}} \frac{\text { Bob }}{Y_{i}}$
$M^{\prime} X_{i} Y_{i} \sim M X_{i} Y_{i} \mid W$

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

W: event that output is correct

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

$$
f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)
$$

W : event that

 output is correct
$M^{\prime \prime} X_{i} Y_{i} \sim M X_{i} Y_{i} \mid W$

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

$\underset{X_{1}, \ldots, X_{n}}{\text { Alice }} \xrightarrow[M]{\mathrm{nC} \text { bits }} \underset{Y_{1, \ldots, Y_{n}}^{B o b}}{B}$ $f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$

W: event that output is correct

$M^{\prime} X_{i} Y_{i} \sim M X_{i} Y_{i} \mid W$

$M^{\prime \prime} X_{i} Y_{i} \sim M X_{i} Y_{i} \mid W$

Theorem: If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq 2^{-\mathrm{n} / 100}$.

$f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$
W : event that output is correct

$\underset{X_{i}}{\text { Alice }} \xrightarrow[M^{\prime \prime}]{n C \text { bits }} \frac{\mathrm{Bob}}{Y_{i}}$
$M^{\prime \prime} X_{i} Y_{i} \sim M X_{i} Y_{i} \mid W$

W : event that output is correct

$M^{\prime \prime} X_{i} Y_{i} \sim M X_{i} Y_{i} \mid W$
$n C \geq I\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n} ; M \mid W\right)$

$=\mathrm{I}\left(\mathrm{X}_{1} \mathrm{Y}_{1} ; \mathrm{M} \mid \mathrm{W}\right)$

 $+\mathrm{I}\left(\mathrm{X}_{2} \mathrm{Y}_{2} ; \mathrm{M} \mid \mathrm{W} X_{1} \mathrm{Y}_{1}\right)$ $+I\left(X_{3} Y_{3} ; M \mid W X_{1} X_{2} Y_{1} Y_{2}\right) \ldots$
Bob

Alice nC bits Bob $\mathrm{X}_{1}, \ldots, X_{n} \xrightarrow{M} Y_{1}, \ldots, Y_{n}$ $f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$ W : event that output is correct

nC bits
Alice
Bob
X_{i}
$n C \geq I\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n} ; M \mid W\right)$

$$
=I\left(X_{1} Y_{1} ; M \mid W\right)
$$

$$
+\mathrm{I}\left(\mathrm{X}_{2} \mathrm{Y}_{2} ; \mathrm{M} \mid \mathrm{W} X_{1} \mathrm{Y}_{1}\right)
$$

$$
+\mathrm{I}\left(\mathrm{X}_{3} Y_{3} ; M \mid W X_{1} X_{2} Y_{1} Y_{2}\right) \ldots
$$

For average i,
$C \geq I\left(X_{i} Y_{i} ; M \mid X_{1}, \ldots, X_{i-1}, Y_{1}, \ldots, Y_{i-1} W\right)$

Alice nC bits Bob $X_{1}, \ldots, X_{n} \longrightarrow M \quad Y_{1}, \ldots, Y_{n}$ $f^{n}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$

W : event that output is correct

Alice

X_{i} nC bits

Bob Y_{i}
$M^{\prime \prime} X_{i} Y_{i} \sim M X_{i} Y_{i} \mid W$
$n C \geq I\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n} ; M \mid W\right)$

$$
=\mathrm{I}\left(\mathrm{X}_{1} \mathrm{Y}_{1} ; \mathrm{M} \mid \mathrm{W}\right)
$$

$$
+\mathrm{I}\left(\mathrm{X}_{2} \mathrm{Y}_{2} ; \mathrm{M} \mid \mathrm{W} X_{1} Y_{1}\right)
$$

$$
+I\left(X_{3} Y_{3} ; M \mid W X_{1} X_{2} Y_{1} Y_{2}\right) \ldots
$$

For average i,
$\mathrm{C} \geq \mathrm{I}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{i} ; \mathrm{M} \mid \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{i}-1} \mathrm{~W}\right)$
WANT: For average i,
$\mathrm{C} \geq \mathrm{I}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}, \mathrm{M}^{\prime \prime} \mid \mathrm{X}_{1, \ldots,}, \mathrm{X}_{\mathrm{i}-1}, \mathrm{Y}_{1, \ldots,}, \mathrm{Y}_{\mathrm{i}-1}\right)$
$\underset{X_{i}}{\underset{M^{\prime} X_{i} Y_{i} \sim M^{\prime \prime} X_{i} Y_{i}}{\text { Alice }} \stackrel{\text { M }}{M^{\prime}}} \stackrel{\text { Bob }}{Y_{i}}$

Cannot use BBCR:

$\frac{\text { Alice }}{x} \xrightarrow{M} \xrightarrow{\text { Bob }}$

$M=\left\{\begin{array}{l}x, \text { with } \varepsilon \text { prob. } \\ \text { random, } 1-\varepsilon \text { prob } .\end{array}\right.$

Cannot use BBCR:

M is ε close to having 0 information, but has very large information
$M=\left\{\begin{array}{l}x, \text { with } \varepsilon \text { prob. } \\ \text { random, } 1-\varepsilon \text { prob } .\end{array}\right.$

Cannot use BBCR:

$M=\left\{\begin{array}{l}x, \text { with } \varepsilon \text { prob. } \\ \text { random, } 1-\varepsilon \text { prob. }\end{array}\right.$

M is ε close to having 0 information, but has
very large information However: can modify protocol to obtain low info protoco!!

Cannot use BBCR:

$M=\left\{\begin{array}{l}x, \text { with } \varepsilon \text { prob. } \\ \text { random, } 1-\varepsilon \text { prob. }\end{array}\right.$

M is ε close to having 0 information, but has very large information However: can modify protocol to obtain low info protocol!

Theorem: If a protocol is statistically close to low information, then it can be simulated by a low information protocol

C information

W : event that output is correct

$M^{\prime \prime} X_{i} Y_{i} \sim M X_{i} Y_{i} \mid W$

Results

Theorem (product distributions): If $\operatorname{suc}(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC} / \operatorname{polylog}(\mathrm{nC})\right) \leq 2^{-\mathrm{n} / 100}$.

Theorem (arbitrary distributions): If suc $(\mathrm{f}, \mathrm{C})<2 / 3$, then $\operatorname{suc}\left(\mathrm{f}^{\mathrm{n}}, \mathrm{n}^{1 / 2}(\mathrm{C}-\mathrm{k}) /\right.$ polylog $\left.(\mathrm{nC})\right) \leq 2^{-n / 100}$.
$\mathrm{k}=$ \# bits in output of f

Open Challenges

Open Challenges

- Simulating a protocol with information I and communication C currently takes (I.C) $)^{1 / 2}$ [BBCR]. Is it possible to do better?

Open Challenges

- Simulating a protocol with information I and communication C currently takes (I.C) $)^{1 / 2}$ [BBCR]. Is it possible to do better?
- Direct products in other computational models (like circuits)? Strong counterexamples known for circuits, but the full truth is still not known.

Questions?

Obviously...

$\operatorname{suc}\left(\mathrm{f}^{n}, \mathrm{nC}\right) \leq$ exponentially small

Watch Out [Feige]

Uniformly random graph, K vertices on each side.

Watch Out [Feige]

Uniformly random graph, K vertices on each side.

If $|S|,|T|>2(\log K)$, edge density between S,T ~ 0.5

Watch Out [Feige]

Random graph, edge density = 0.5

$A, B \subset\{1,2, \ldots, k\}$ $|A|,|B|=2$

Watch Out [Feige]

Random graph, edge density =

 0.5
$A, B \subset\{1,2, \ldots, k\}$ $|A|,|B|=2$

Alice
$x \in[k]$
Output A \ni X
Goal: Output (A, B) that is an edge

Watch Out [Feige]

Random graph, edge density =

 0.5
$A, B \subset\{1,2, \ldots, k\}$ $|A|,|B|=2$

Alice
$x \in[k]$
Output AэX

Bob $y \in[k]$

Output Bэy
Lemma: $\operatorname{Pr}[(A, B)$ is an edge] ~ 0.5

Watch Out [Feige]

Watch Out [Feige]

Random graph,
edge density = 0.5

$$
\begin{gathered}
A, B \subset\{1,2, \ldots, k\} \\
|A|,|B|=2
\end{gathered}
$$

Alice
$x \in[k]$

Bob $y \in[k]$

Output $\mathrm{A} \ni \mathrm{X}$
 Output Bэy

Lemma: $\operatorname{Pr}[(\mathrm{A}, \mathrm{B})$ is an edge] ~ 0.5

Alice
$\mathrm{x}_{1}, \mathrm{x}_{2} \in[\mathrm{k}]$
$A=\left\{x_{1}, x_{2}\right\}$
Bob
$\mathrm{y}_{1}, \mathrm{y}_{2} \in[\mathrm{k}]$
$B=\left\{y_{1}, y_{2}\right\}$

Lemma: $\operatorname{Pr}[(A, B)$ is an edge] ~ 0.5

Wait wait...

Random graph, edge density = 0.8

Alice

$0.1 \log k$ bits

Output Aэx Output Bэy

$\operatorname{Pr}[(A, B)$ is an edge]

\[\begin{aligned} Alice \& B o b
\mathrm{x}_{1}, \mathrm{x}_{2} \in[\mathrm{k}] \& \mathrm{y}_{1}, \mathrm{y}_{2} \in[\mathrm{k}]
\mathrm{A}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\} \& \mathrm{B}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}\right\} \end{aligned} \]
Lemma: $\operatorname{Pr}[(\mathrm{A}, \mathrm{B})$ is an edge] ~ 0.5 transmit A,B!

