Direct Products in Communication Complexity

Mark Braverman, Anup Rao, Omri Weinstein, Amir Yehudayoff

Princeton

Washington

Princeton

Technion

Direct Sums

Direct Sums

Direct Sums

Direct Products <u>Success</u>

Probability 0.9

Random input

Direct ProductsSuccessSuccessProbabilityRandom
inputx \longrightarrow f(x)0.9

Communication Complexity

Wednesday, February 20, 13

Complexity: # bits exchanged x,y drawn from some known distribution

Complexity: # bits exchanged x,y drawn from some known distribution

Complexity: # bits exchanged x,y drawn from some known distribution

Complexity: # bits exchanged x,y drawn from some known distribution

Complexity: # bits exchanged x,y drawn from some known distribution

Applications

- Combinatorial Auctions
- Data Structure Lower Bounds
- VLSI design/Distributed
 Computing
- Lower bounds for branching programs, pseudorandom generators for space.
- Streaming algorithms

The Question

suc(f,C) = max success probability for computing f with C bits CC

 $f^{n}(x_{1},...,x_{n},y_{1},...,y_{n}) = f(x_{1},y_{1}),...,f(x_{n},y_{n})$

Prior Work

Suppose suc(f,C) < 2/3, then suc(fⁿ,T) $\leq 2^{-n/100}$, if

- f is disjointness [Klauck]
- f has small discrepancy [Shaltiel, Lee-Shraibman-Spalek, Sherstov] or a smooth rectangle bound [Jain-Yao]
- T < C [Pernafez-Raz-Wigderson]
- protocol has few rounds [Jain-Pereszlenyi-Yao, Molinaro-Woodruff-Yaroslavtsev]

Our Results

Our Results

Theorem (product distributions): If suc(f,C) < 2/3, then $suc(f^n,nC/polylog(nC)) \le 2^{-n/100}$.

Theorem (arbitrary distributions): If suc(f,C) < 2/3, then $suc(f^n,n^{1/2}(C-k)/polylog(nC)) \le 2^{-n/100}$.

k= # bits in output of f

Our Results

Theorem (product distributions): If suc(f,C) < 2/3, then $suc(f^n,nC/polylog(nC)) \le 2^{-n/100}$. $\le 2/3$ [BBCR]

Theorem (arbitrary distributions):If suc(f,C) < 2/3, then</td>suc(f^n,n^{1/2}(C-k)/polylog(nC)) $\leq 2^{-n/100}$.k= # bits in output of f

Rest of the Talk

Theorem (uniform distribution): If suc(f,C) < 2/3, then $suc(f^n,nC/polylog(nC)) \le 2^{-n/100}$.

Theorem (arbitrary distributions): If suc(f,C) < 2/3, then $suc(f^n,n^{1/2}(C-k)/polylog(nC)) \le 2^{-n/100}$.

k= # bits in output of f

Rest of the Talk

Theorem (uniform distribution): If suc(f,C) < 2/3, then $suc(f^n,nC/polylog(nC)) \le 2^{-n/100}$. $\le 2/3$ [BBCR]

Theorem (arbitrary distributions): If suc(f,C) < 2/3, then $suc(f^n,n^{1/2}(C-k)/polylog(nC)) \le 2^{-n/100}$.

k= # bits in output of f

Proof by Reduction

Theorem [BBCR]: If suc(f,C) < 2/3, then $suc(f^n, nC) \le 2/3$.

Theorem [BBCR]: If suc(f,C) < 2/3, then $suc(f^n, nC) \le 2/3$.

Information [Shannon]

I(A;B)=
$$\mathbb{E}_{p(a,b)} \left[\log \frac{p(a|b)}{p(a)} \right]$$

If A,B - random variables p(a,b)- joint distribution

Information [Shannon]

Properties of Info I(A;B|C) = E_c[I(A;B|C=c)] = $\underset{p(a,b,c)}{\mathbb{E}} \left[\log \frac{p(a|bc)}{p(a|c)} \right]$

 $I(A_1A_2;B) = I(A_1;B) + I(A_2;B|A_1)$

If D is a T-bit string, $I(C;D) \leq T$

Wednesday, February 20, 13

Information Cost

External information: I(XY;M)

Information Cost

External information: $I(XY;M) \leq T$

Wednesday, February 20, 13

nC bits Alice Theorem: If suc(f,C) < 2/3, then suc(f^n , nC) $\leq 2^{-n/100}$. X₁,...,X_n Μ $f^{n}(X_{1},...,X_{n},Y_{1},...,Y_{n})$ W: event that output is correct Intuition: W cannot simultaneously affect all n inputs or messages about nC bits all n inputs. Alice

Xi

 $M''X_iY_i \sim MX_iY_i|W$

Wednesday, February 20, 13

M is ε close to having 0 information, but has very large information

M is ε close to having 0 information, but has very large information

However: can modify protocol to obtain low info protocol!

M is ε close to having 0 information, but has very large information

However: can modify protocol to obtain low info protocol!

Theorem: If a protocol is statistically close to low information, then it can be simulated by a low information protocol

Results

Theorem (product distributions): If suc(f,C) < 2/3, then $suc(f^n,nC/polylog(nC)) \le 2^{-n/100}$.

Theorem (arbitrary distributions): If suc(f,C) < 2/3, then $suc(f^n,n^{1/2}(C-k)/polylog(nC)) \le 2^{-n/100}$.

k= # bits in output of f

Open Challenges

Open Challenges

 Simulating a protocol with information I and communication C currently takes (I.C)^{1/2} [BBCR]. Is it possible to do better?

Open Challenges

- Simulating a protocol with information I and communication C currently takes (I.C)^{1/2} [BBCR]. Is it possible to do better?
- Direct products in other computational models (like circuits)? Strong counterexamples known for circuits, but the full truth is still not known.

Questions?

Wednesday, February 20, 13

NAMES AND ADDRESS.

Obviously...

$suc(f^n, nC) \leq exponentially small$

Uniformly random graph, K vertices on each side.

Uniformly random graph, K vertices on each side.

If |S|,|T| >2(log K), edge density between S,T ~ 0.5

Random graph, edge density = 0.5

Random graph, edge density = 0.5

AliceBob $x \in [k]$ $y \in [k]$ 0utput A $\ni x$ 0utput B $\ni y$ Goal: Output (A,B) that is an edge

Watch Out [Feige]Random graph,
edge density =
0.5Alice
 $X \in [k]$ Bob
 $y \in [k]$
 $y \in [k]$ 0.5 $Output A \ni x$ $Output B \ni y$
Lemma: Pr[(A,B) is an edge] ~ 0.5

Random graph, edge density = 0.5

Wait wait...

