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Abstract

We consider boolean circuits in which every gate may compute an arbitrary boolean function of k
other gates, for a parameter k. We give an explicit function f : {0, 1}n → {0, 1} that requires at least
Ω(log2 n) non-input gates when k = 2n/3. When the circuit is restricted to being depth 2, we prove
the bound of nΩ(1) on the fan-in of the top gate. When the circuit is a formula, we give a lower bound
Ω(n2/k logn) on the total number of gates, for general k.

Our model is connected to some well known approaches to proving lower bounds in complexity theory.
Optimal lower bounds for the Number-On-Forehead model in communication complexity, or for bounded
depth circuits in AC0, or extractors for varieties over small fields would imply strong lower bounds in
our model. On the other hand, new lower bounds for our model would prove new time-space tradeoffs
for branching programs and impossibility results for (fan-in 2) circuits with linear size and logarithmic
depth. In particular, our lower bound gives a different proof for the best known time-space tradeoff for
oblivious branching programs.

1 Introduction

A boolean circuit is usually defined as a directed acyclic graph where vertices (called gates) have in-degree
(called fan-in) at most 2. Every gate with fan-in 0 corresponds to an input variable, and all other gates
compute an arbitrary boolean function of the values that feed into them. Sometimes the model is restricted
to using gates from the DeMorgan basis (i.e. AND, OR, NOT) gates, but this changes the size of the circuit
by at most a constant factor. The circuit computes a function f : {0, 1}n → {0, 1} if some gate in the circuit
evaluates to f . A formula is a circuit whose underlying graph is a tree. The depth of the circuit is the length
of the longest path in the graph.

Since every algorithm with running time T (n) can be simulated by circuits of size Õ(T (n)), one can hope
to prove lower bounds on the time complexity of algorithms by proving lower bounds on circuit size. A
super-polynomial lower bound on the circuit size of an NP problem would imply that P 6= NP. However,
we know of no explicit function (even outside NP) for which we can prove a super-linear lower bound. In
contrast, counting arguments imply that almost every function requires circuits of exponential size.

We study a stronger model of circuits. We allow the gates to have fan-in k, where k is a parameter that
depends on n, and each gate may compute an arbitrary function of its inputs. Typically, we consider the
case where k is a constant fraction of n. We write Ck(f) to denote the minimum number of non-input gates
required to compute f in this model.

These circuits are much stronger than the models usually studied in the context of proving lower bounds.
Nevertheless, we show that many attempts at proving lower bounds on other models of computation can
be seen as proving new lower bounds in our model. Truly exponential lower bounds for AC0, optimal lower
bounds for the Number-On-Forehead (or NOF) model of communication, or new extractors for varieties over
small fields, would all improve the best lower bounds we know how to prove for Cn/2(f). On the other hand,
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lower bounds in our model could lead to lower bounds for branching programs and circuits of logarithmic
depth. Our Theorem 1 already leads to a different proof of the best known lower bounds on oblivious
branching programs of [BNS92]. We elaborate on these connections in Section 4.

A similar model has been studied in past work. Circuits with arbitrary gates and arbitrarily large fan-in
have been considered for computing several boolean functions simultaneously. If n boolean functions are
being computed, the trivial upper bound uses n2 wires (edges). Super-linear lower bounds on the number of
wires are known for circuits of bounded depth in this scenario. Cherukhin [Che05] proved a lower bound of
Ω(n1.5) on the number of wires required in a depth-2 circuit, and bounds of around n log2 n were obtained
earlier using graph-theoretic arguments [PRS97, RTS00] (see also the survey in [Juk01]). No non-trivial
bound is known for logarithmic depth. These results do not seem to give non-trivial lower bounds on Ck(f).

Clearly, Cn(f) = 1, if f has n variables. However, when the fan-in is restricted, the power of circuits
dramatically decreases. Counting arguments show that for almost every f , Ck(f) > 2(n−k)−o(n−k), which
is exponentially large even for k linear in n. The challenge is to obtain such a lower bound for an explicit
function f . If f depends on all its n inputs, it is easy to see that Ck(f) ≥ n/k. When k is linear in n, this
trivial lower bound is just a constant.

In [CFL83], Chandra, Furst and Lipton the Number-on-Forehead model of communication. They proved
first non-trivial results in this model, and showed that communication lower bounds can be used to argue
about complexity of computation. Specifically, they proved super-constant time-space tradeoffs for branching
programs computing the majority function. The lower bound is obtained via Ramsey style argument and
displays a tower-like decay. A similar reduction to the NOF model can be employed in our model, yielding
super-constant lower bounds on C2n/3(Majority) and host of other functions. However, NOF lower bounds
can give a stronger result. First, we will start with a function for which strong communication lower are
known, as given by Babai, Nisan and Szegedy [BNS92]. Second, we use a more sophisticated reduction. We
will show: 1

Theorem 1. There exists f ∈ P such that for every γ > 0 and n large enough, Cn(1−γ)(f) ≥ Ω(γ log2 n).

The proof is reminiscent of the approach in Beame and Vee [BV02] and [BNS92] concerning trade-offs
for branching programs. Our result is however stronger, since a small branching program can be simulated
by a small circuit of linear fan-in.

Next we define a quantity which is closely related to Ck(f). Let C2
k(f) denote the smallest number m

such that there exist boolean functions g, f1, . . . , fm with f = g(f1, . . . , fm), where every fi reads at most k
inputs. We prove:

Theorem 2. There exists f ∈ P such that C2
(1−γ)n(f) ≥ Ω(ncγ), c > 0.

The proof of Theorem 2 involves ideas inspired by Nechiporuk’s [Nec66] lower bound on boolean formula
size, to whom we pay homage in the title of this paper. We show (Proposition 4) that C2

k(f) ≤ Ck(f) ·2Ck(f)

for every f , so Theorem 2 implies a lower bound of Ω(γ log n) on Cn(1−γ)(f). In fact, the specific f from
Theorem 2 satisfies Cn/2(f) ≤ O(log n), showing that C2

n/2 can be exponentially larger than Cn/2.
Finally, we observe that Nechiporuk’s original proof can be easily extended to formulas with large fan-in.

Write Lk(f) for the smallest number of leaves in a formula computing f with fan-in at most k. Nechiporuk
gave an explicit function f for which L2(f) ≥ Ω(n2/ log n). We note that this can be generalised to:

Theorem 3. There exists f ∈ P such that Lk(f) = Ω(n2/k log n).

Note that for formulas we are counting leaves and not just the non-input gates. Of course, Theorem 3
implies a lower bound of Ω(n2/k2 log n) on the number of non-input gates as well.

Let us mention that the lower bound in Theorem 1 is stronger than stated. Consider circuits where the
gates can have arbitrarily large fan-in, but each gate can read at most k input variables. Define C∗k(f) as
the smallest number of non-input gates which read some input variable in a circuit computing f . Then

1Abusing notation, we write f ∈ P to mean that f is obtained by restricting a polynomial time computable function to n-bit
inputs.
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C∗k(f) ≤ Ck(f). As far as our results go, this quantity is more natural – C∗k(f) is more closely related to
transfer of information rather than actual computation. Indeed, the lower bounds on Ck given in Theorem
1, and the one implied by Theorem 2, apply indiscriminately to C?k . This, however, points to a certain
weakness in our arguments. C?k(f) can never exceed n; in order to prove super-linear lower bounds we need
techniques which essentially distinguish Ck and C?k .

In Section 2, we discuss the quantities Ck, C
2
k and C?k in greater detail. In Section 3, we give the proofs our

lower bounds. In Section 4, we outline the connections between our model and other problems in complexity
theory.

2 Circuits of medium fan-in

Before we embark on proving our main theorems, we make some general comments about our computational
model.

As mentioned in the introduction, counting arguments show that for almost every f , Ck(f) > 2(n−k)−o(n−k).
The bound is exponential even when k is very close to n, and super-linear even when k < n − 1.1 log n. It
becomes sub-linear when k > n− log n. However, as we count the non-input gates, it is still non-trivial. For
example, Cn−1.1 log logn(f) = Ω(logn) for most functions f .

The trivial upper bound on the quantity C2
k(f) is n. More interestingly, this estimate is quite robust:

there exists an f for which C2
bn−logn−1c(f) = n. Indeed, the number of choices for the functions g, f1, . . . , fm

is at most

22m
((

n

k

)
22k
)m
≤ 22m+m2k+nm .

In order to realize all n-variate functions, we must have 2m + m2k + nm ≥ 2n. If m = n − 1 and k =
bn− log n− 1c, the bound is

2n−1 + (n− 1)2n−1/n+ n2 = 2n(1− 1/(2n)) + n2 < 2n.

An exercise would show that if ` ≤ log n, C2
n−`(f) ≤ 2` + `, showing that C2

k decreases when k goes above
n− log n.

Depth-2 circuits are arguably interesting in their own right. They can also serve as a tool to understand
general circuits, via the follow proposition:

Proposition 4. C2
k(f) ≤ Ck(f) · 2Ck(f). (In fact, this holds for C?k instead Ck.)

Proof. Let u1, . . . , us be the non-input gates in a circuit of size s = Ck(f) computing f . For every i ∈ [s]
and every σ ∈ {0, 1}s, we define a function fi,σ that depends on at most k input variables, as follows.

We interpret σ as an assignment of bit values to the s non-input gates of the circuit. fi,σ reads the input
variables that are read by ui, and outputs 1 if and only if there exists some setting of the remaining input
variables that could result in the evaluation given in σ. Define g to be the function that reads the outputs
of the fi,σ’s and computes f by finding the unique σ for which fi,σ = 1 for every i.

If a gate ui does not read any variable then fi,σ is constant and can be thrown away, giving the statement
for C?k .

Proposition 4 together with Theorem 2 already gives an Ω(log n) lower bound on C2n/3(f). However,the
exponential loss in the transformation means that even an optimal lower bound (of n) on depth-2 circuits
would give at most a logarithmic lower bound for general circuits. Proposition 5 implies that the exponential
loss is inevitable.

The trivial upper bound on C?k is n. Indeed, we have both C?k ≤ Ck and C?k ≤ C2
k . A random function

satisfies C?k(f) = Ω(n− k). This is not clear from the definition, but can be seen as follows: in the proof of
Proposition 4, the construction of g does not depend on the actual circuit but only on the size s. Hence, if
C?k(f) = s, f is uniquely determined by s2s functions with fan-in k, which gives s = Ω(n− k) for a random
f . As noted in the introduction, our lower bounds on Ck are in fact lower bounds on C?k .
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2.1 Communication complexity

In the Number-On-Forehead model of communication complexity [CFL83], there are p parties that are trying
to compute a function f(x1, x2, . . . , xp), where each xi is a n/p-bit string. The i’th party can see every input
except xi. To evaluate f , the parties exchange messages (by broadcast), until one of the parties can transmit
the value of f to the others. The complexity of f is the number of bits the players need to exchange in order
to evaluate f . The trivial upper bound is n/p. Currently the best lower bound is due to Babai, Nisan and
Szegedy [BNS92], who proved that the generalized inner product function defined by

GIP(x1, . . . , xp) =

n/p∑
i=1

p∏
j=1

xji mod 2

requires Ω(n/22p) bits of communication.
The most straightforward connection between circuits and the NOF model is the following observation:

Suppose that a circuit computing f(x1, . . . , xp) has the property that for every gate u there is some i ∈ [p]
such that u reads no variable from xi. Then, if the circuit has s non-input gates, the function f can be
evaluated using s bits in the NOF model.

This does not directly imply a circuit lower bound – in a circuit of linear fan-in, gates may access a constant
fraction of each of the blocks xi. For example, GIP can be computed by a constant size circuit with fan-in
n/2 (imagine two gates, one reading the first half of every xi, and the other the second half). Nevertheless,
this issue can be partially circumvented, as in [CFL83] or in our Theorem 1, where we use the GIP function
to obtain C2n/3(f) ≥ Ω(log2 n) for a related function f . Furthermore, let us note that an optimal Ω(n/p)
lower bound in the NOF model would imply C2n/3(f) ≥ Ω (

√
n).

The main feature of the NOF model is the extreme overlap of information between the parties. It may
be convenient to think of C?k in terms of a different communication game. The players want to evaluate
f(x), and each player has access to some 50% fraction of the input. The complexity of this game exactly
corresponds to the quantity C?n/2: with every non-input gate, we can associate a player who can see the
inputs the gate reads. The circuit then provides a C?n/2 protocol to evaluate f . Conversely, any such m-bit
protocol can be interpreted as a circuit with at most m non-input gates reading a part of the input. In
this perspective, the difference between C?k and C2

k is essentially the difference between an interactive and
non-interactive communication protocol.

3 The lower bounds

3.1 The classical Nechiporuk method applied to Lk(f)

The proofs of Theorems 2 and 3 are variations of Nechiporuk’s lower bound on formula size, which we now
discuss. Given a boolean function f , a subset of its variables S, and a 0, 1-assignment σ to the variables in
S, let fσ be the function obtained by setting the variables in S to σ in f . An S-subfunction of f is a function
of the form fσ, where σ is a 0, 1-assignment to the variables in the complement of S. It is a function in the

variables S; the number of S-subfunctions of f is clearly at most min(22|S| , 2n−|S|), if f has n variables.
Nechiporuk finds a function f whose n-bit input is partitioned into intervals x1, x2, . . . , xn/ logn of size

log n such that, for every i, f has 2Ω(n) xi-subfunctions. An example to keep in mind is the element
distinctness function:

f(x1, . . . , xn/ logn) =

{
1 if x1, . . . , xn/ logn are distinct

0 otherwise.

Observe that whenever σ2, . . . , σn/ logn are distinct log n-bit strings then f(x1, σ2, . . . , σn/ logn) rejects pre-

cisely on the inputs σ2, . . . , σn/ logn. Hence f has at least
(

n
n log−1 n−1

)
= 2Ω(n/ logn) x1-subfunctions, and

likewise for any xi. A slightly more complicated function would give 2Ω(n) subfunctions.
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We now prove Theorem 3, which is a straightforward extension of the argument for k = 2 to general k.
It is however noteworthy that the bound deteriorates only polynomially with k.

Claim. Let S be a subset of variables of f . Assume that f can be computed by a formula with fan-in ≤ k
in which m leaves are labelled with a variable from S. Then f has at most 2O(mk) S-subfunctions.

Proof. Given a formula computing f , take the tree T obtained as the union of all paths going from some
variable in S to the output. First, we can assume that there is no path u1, . . . , up in T with p > 2 and
u2, . . . , up having in-degree 1 in T . For then the value of up is determined by the value of u1 and the variables
in the complement of S. We can then replace up in our formula by a single binary gate which takes as input
u1 and a function not depending on S. This may increase the overall size of the formula, but leaves m
unchanged. The tree T has m leaves and, as it now has few nodes with in-degree one, it has at most 4m
nodes. Second, in order to define an S-subfunction, we only have to specify, for every gate v in T , the values
of its inputs coming from outside of T . Since the fan-in is at most k, there will be altogether at most 4mk
such gates and so f has at most 24mk S-subfunctions.

Applying the claim to the function above, we obtain that every formula computing f contains Ω(n/k)
leaves labelled with a variable from xi, for every i ∈ {1, . . . , n/ log n}. This means that any such formula

contains Ω( n2

k logn ) leaves altogether.

3.2 Proof of Theorem 2

In order to prove our theorem, we will find a function f that has a stronger property with regards to its
subfunctions. Namely, f will have many functions not just for S coming from a fixed partition of the inputs;
it will have many subfunctions for almost every log n-element set.

We define our hard function as follows. f(x, y) will take as inputs x ∈ {0, 1}n0+logn0 and a roughly log2 n0-
bit string y. We view y as representing a subset Sy ⊂ [n0 + log n0] of size log n0. For S ⊆ [n0 + log n0], let
xS be the projection of x to the coordinates in S. If |S| = log n0, we view the log n0-bit string xS as an
element of [n0]. Furthermore, x(S) will be the subset of [n0] represented by the bits of x in the complement
of S, namely: i ∈ x(S) iff the i-th bit of xSc equals 1. Then define

f(x, y) =

{
1 if xSy ∈ x(Sy),

0 otherwise.

f has n = n0 + O(log2 n0) variables. Given a fixed y, an Sy-subfunction of f(x, y) is uniquely determined
by a subset of [n0]. Hence:

Claim 1. For every log n0-element subset S of the variables x, f has 2n0 S-subfunctions.

To prove Theorem 2, it will be enough to show that any small circuit gives an upper bound on the number
of S-subfunctions of f , for some log n0 element subset of x. Suppose that

f = g(f1, . . . , fm) .

Let Ai be the set of input variables fi reads and assume that |Ai| ≤ (1 − γ)n for every i ∈ [m]. First, we
note that:

Claim 2. If n0 > 100 and m < ncγ/2, where 0 < c < 1/2 is a suitable absolute constant. Then there exists
a log n0-element subset S of the variables x which satisfies |S ∩Ai| ≤ (1− γ/2) log n0 for every i ∈ [m].

Proof. Pick log n0 variables a1, . . . , alogn0
from x, y uniformly at random. With high probabilty, they will

be distinct and they will completely miss the variables y; the probability being larger that 1/2 if n0 > 100.
For a given set A of size ≤ (1− γ)n, let X be the random variable

∑
ai∈A 1. The Chernoff bound gives,

Pr

[
X

log n
≥ 1− γ/2

]
≤ e−D(1−γ/2||1−γ) logn0 < n−cγ0 ,
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where D(1 − γ/2||1 − γ) = γ/2 ln(1/2) + (1 − γ/2) ln((1 − γ/2)/1 − γ) is the Kullback-Leibler divergence.
As γ approaches 0, the divergence becomes roughly γ/2 ln(1/2) + γ/2 > 0.15γ; as γ approaches 1 it goes
to infinity. Hence we indeed have D(1 − γ/2||1 − γ) ≥ c′γ for some constant c′ > 0 and every γ ∈ (0, 1).
If m < nc0/2, the union bound gives that a log n0-element set satisfies |S ∩ Ai| ≤ (1 − γ/2) with positive
probability.

If m ≥ ncγ0 /2, we have a lower bound. Otherwise let S be the set promised by Claim 2. Hence, for

every i ∈ [m], the number of S-subfunctions of fi is at most 22|S∩Ai| ≤ 2n
1−γ/2
0 . Furthermore, every S-

subfunction of f is uniquely determined by S-subfunctions of f1, . . . , fm, and hence f has at most 2n
1−γ/2
0 m

S-subfunctions. By Claim 1, this means that m ≥ n
γ/2
0 . Hence, C2

(1−γ)n(f) ≥ ncγ0 /2 = Ω(ncγ), proving
Theorem 2.

By Proposition 4, this also means that C(1−γ)n = Ω(γ log n).

3.2.1 A Matching Upper Bound for f(x, y)

We will now show that the lower bound from Theorem 2 is tight for the function f(x, y) defined above2.
The principal merit of the following proposition, however, is in showing that the exponential gap between
Ck and C2

k from Proposition 4 is inevitable.

Proposition 5. There exists c > 0 such that for every 0 < γ < 1/2 and n sufficiently large, C2
(1−γ)nf(x, y) ≤

ncγ and C(1−γ)nf(x, y) ≤ cγ log n .

Proof. It is enough to prove the bound for C(1−γ)n and invoke Proposition 4. We will outline the construction
for γ = 1/2 and then sketch how to adapt it to the general case. Divide the variables x into two equal subsets
x1 and x2. Let g1 be the function which, on inputs x1 and y, outputs a log n-bit string whose first bits equal
x1 restricted to Sy. Define g2 similarly. This means that xSy can be recovered from x2, y and the advice
from g1; likewise for x1, y and g2. It is now easy to see that we can write f(x, y) = h1(g1, x2, y)∨h2(g2, x1, y)
with suitable h1 and h2. This gives approximately log n gates with fan-in approximately n/2.

In general, partition the variables x into r disjoint subsets a1, . . . , ar of nearly the same size. The gates
will have access to the inputs y and x \ ai for some i ∈ [r]. Note that for any log n0 element subset S of x,
there will exist two distinct ai and aj with |ai∩S|, |aj ∩S| ≤ 2 log n0/r. We can recover xSy from x\ai with
an advice of 2 log n/r bits, and as above, compute f(x, y) using two gates depending y, x \ ai and y, x \ aj
and 2 log n/r bits of advice each. The advice itself can be computed by gates which have access to either
y, x \ a1 or y, x \ a2. This gives a circuit with roughly r log n+ 1/r gates of fan-in (1− 1/r)n; this is at most
cr log n gates for fixed r and large enough n.

3.3 Proof of Theorem 1

We will deduce a lower bound on Ck(f) from known results in the NOF model. The main issue with the
reduction to NOF model is that we do not apriori know which variables will the gates in a circuit read. One
way to simulate any circuit with linear fan-in and m gates using m parties is to associate every gate with
a party and then greedily assign variables to parties, giving inputs of length Ω(n/m) for each party. We
manage to reduce the parties to O(m/ log n), which helps us obtain stronger lower bounds. The essence is
the following Lemma:

Lemma 6. Let G ⊆ A× B be a bipartite graph with |A| = m, |B| = n and with every a ∈ A having degree
at least γn, where 0 < γ < 1/100 and n is sufficiently large with respect to γ−1. If log n ≤ m ≤ log2 n, then
there exists p ≤ 5m/γ and disjoint T1, . . . , Tp ⊆ A, S1, . . . , Sp ⊆ B, each Si of size at least n0.9, such that
A =

⋃
Ti and (Ti × Si) ⊆ G for every i ∈ [p].

Proof. We first prove the following:

2In the case when γ is fixed and n grows independently.
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Claim. Assume that G satisfies m ≤ log n instead. Then G contains a complete bipartite graph with at least
γm/2 vertices on the left and 2n0.9 vertices on the right.

Proof. Remove from B all vertices with degree ≤ γm/2. The remaining set B′ has size at least γn/2. For
M ⊆ A, let B(M) be the set of b ∈ B′ such that b is connected to every a ∈M . Hence,

B′ =
⋃

|M |=dγm/2e

B(M) .

Since m ≤ log n and γ < 1/100, the number of sets with |M | = dγm/2e is at most n0.09. Hence there exists
an M with |M | = dγm/2e and B(M) ≥ 0.5γn · n−0.09 ≥ 2n0.9, for n large enough.

We will apply the Claim several times. If m > log n, choose an arbitrary log n-element subset of A and
let T1 × S1 be the complete graph guaranteed by the Claim. If m ≤ log n, apply the Claim directly to G.
Remove from G all the vertices T1 and S1, obtaining a new graph G2 ⊆ A2×B2. Repeat this process p times
to obtain graphs G2, . . . , Gp until Ap = ∅. We claim that p ≤ 5m/(γ log n) First, for such a small p, we have
altogether removed o(n) vertices from B and so |Bi| ≥ n(1− o(1)). Similarly, the degree of any a ∈ Ai is at
least γ|Bi|/2. Hence, as long as |Ai| ≥ log |Bi|, we remove at least γ log n/4 vertices from Ai. After at most
4m/(γ log n) steps, we then must have |Ai| < log |Bi|. After this point, Ai decreases by at least the factor
of (1 − γ/2), and so the size drops below 1 in roughly log log n/γ steps, which is much smaller that m/γ.
Finally, the size of every Si is at least |Bi|0.9 = 2(n(1− o(1)))0.9 ≥ n0.9, if n is large enough.

Let us now take a function which is hard to evaluate in the NOF model, such as the generalized inner
product mentioned in Section 2.1. Our hard function f(x, y) is defined as follows. It takes as inputs

x ∈ {0, 1}n0 and an auxiliary string y. We think of y as defining ky ≤ log n0 disjoint subsets S1
y , . . . , S

ky
y of

[n0], of equal size not exceeding n0.9
0 . Hence, y can be taken as roughly n0.9

0 log2 n0-bit string. We define

f(x, y) := GIP(xS1
y
, . . . , x

S
ky
y

) .

f(x, y) has n = n0 +O(n0.9
0 log2 n0) variables.

Suppose that for a fixed 0 < γ and n sufficiently large, f(x, y) can be computed using m < γ log2 n/50
non-input gates with fan-in n(1 − γ). Take the graph G whose left vertices are the m gates of the circuit
and the right vertices the n0 variables x. There is an edge between a gate and a variable iff the gate does
not read the variable. Since y is much smaller than x, the degree of a gate in G is at least γn0/2. To
apply the Lemma, we will assume γ < 1/100 (otherwise the circuit is weaker) and that m ≥ log n0 (by
possibly adding dummy gates). The Lemma shows that there exist disjoint sets of variables S1, . . . , Sp
with p ≤ log n/5 and Si = bn0.9

0 c such that each gate completely misses at least one set Si. We can fix
y so that y represents S1, . . . Sp and hence f(x, y) becomes GIP(xS1 , . . . , xSp). As observed in Section 2.1,
the circuit now gives an m-bit protocol for GIP(xS1 , . . . , xSp). By the [BNS92] lower bound, this implies

m ≥ Ω(n0.9
0 2−2 logn0/5) = Ω(

√
n0), contradicting the assumption m < γ log2 n/50. This proves Theorem 1.

4 Connections to Other Models

Here we show how is our model is connected to several disparate problems in complexity theory.

4.1 Circuits of Linear Size and Logarithmic Depth

Obviously, Ck(f) ≤ C2(f), so any super-linear lower bound in our model would give a super-linear lower
bound for circuits of fan-in 2. However, even a linear lower bound on our model would give a function that
cannot be computed by a linear sized logarithmic depth circuit:

Proposition 7. If f has a fan-in 2 circuit of linear size and logarithmic depth, then for any ε > 0, Cnε(f) <

O
(
n log(1/ε)
log logn

)
.
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Valiant [Val77] showed that any (fan-in 2) circuit of linear size and logarithmic depth contains a set T

of O
(
n log(1/ε)
log logn

)
gates such that every path of length ε log n in the circuit must touch a gate from the set.

Since every such gate in T can be computed from at most nε other gates from T and the inputs, we obtain
Proposition 7.

4.2 Oblivious Branching Programs

An oblivious branching program of width w and length ` is a directed graph with vertices partitioned into
` layers L1, . . . , L`. Each layer is associated with an input variable. Every vertex in Li has out-degree 2,
with the edges labeled 0, 1. Every vertex of L` is labeled with an output value. The program is executed by
starting at the first vertex of L1, and reading the variables in turn to find a path through the program until
the output is determined.

Barrington [Bar89] showed that every logarithmic depth circuit (of fan-in 2) can be simulated by a
branching program with w = 5, ` = poly(n). Thus it is very interesting to prove super-polynomial lower
bounds on such programs.

A line of work has proved time-space tradeoffs on such programs. Alon and Maass [AM86] used reductions
to Ramsey theory to show that any program for computing the majority function must have ` logw ≥
ω(n log n). Babai, Nisan and Szegedy [BNS92] proved a lower bound of ` logw ≥ Ω(n log2 n) by reductions
to the Number-on-Forehead communication model. Beame and Vee [BV02] simplified the proof of this last
bound. No better lower bound on ` logw is known, to our knowledge.

Our results give lower bounds that match those of [BNS92] via the following proposition:

Proposition 8. If f can be computed by an oblivious branching program of width w < 2εn/2 and length `,
then Cεn(f) ≤ 2` logw

εn .

The first logw gates of the circuit read the first εn/2 variables read by the program and together compute
the name of the vertex reached after those layers. The next logw gates read the outputs of the previous
gates and the next εn/2 variables, to compute the name of the vertex in layer Lεn. Continue in this way
until all of the program has been simulated. Thus we obtain a lower bound of ` logw ≥ Ω(n log2 n) on the
length of the program using Proposition 8 and Theorem 1. Any lower bound of the type Cεn(f) = ω(log2 n)
would give new time-space tradeoffs for branching programs.

4.3 AC0

An AC0 circuit is a circuit that has constant depth, and gates of unbounded fan-in that compute functions
from the DeMorgan basis. Any size s AC0 circuit can be simulated by a size s2 circuit with gates of fan-in 2.

Beautiful methods have been developed to prove lower bounds on these circuits [Has86, Raz87, Smo87].

The best known lower bounds for a depth d circuit are of the type 2Ω(n1/d). The following proposition shows
that truly exponential lower bounds would give linear lower bounds in our model.

Proposition 9. There is a depth-3 AC0 circuit of size kCk(f) · 2Ck(f)+k computing f .

To see this, observe that the g in the proof of Proposition 4 can be computed by a formula in disjunctive
normal form of size Ck(f) ·2Ck(f). Furthermore, each fi,σ depends on k variables, and so it can be computed
by a formula in conjuctive normal form, or a disjunctive normal form, of size k · 2k.

Propositions 7 and 9 together imply that truly exponential lower bounds on the circuit size of a depth-3
AC0 computing f would imply that f does not have linear sized circuit of logarithmic depth, an observation
already made by Valiant [Val77].

4.4 Extractors/Dispersers for Varieties

Given a field F, a variety is a set of the form {x ∈ Fn : f1(x) = f2(x) = . . . fm(x) = 0}, where f1, . . . , fm are
polynomials. For a finite field F, an extractor for varieties is a function f : Fn → {0, 1} which is non-constant
on any sufficiently large variety defined by low-degree polynomials.

8



Dvir [Dvi12] showed how to use bounds on exponential sum estimates by Deligne [Del74] to obtain
extractors for varieties. Working over a prime field of size p, he shows that if ρ > 1/2 is a constant, and
V ⊆ Fn is a variety of size pρn defined by polynomials of degree ρn, then there is an efficiently computable
extractor for such varieties, as long as p is polynomially large in n. Here we show that such a result for p = 2
would imply non-trivial circuit lower bounds.

Proposition 10. Let p = 2. If f is an extractor for varieties of size 2ρn defined by degree k polynomials,
then Ck(f) > (1− ρ)n.

Proof. Suppose there is a circuit computing f with m gates of fan-in k. By averaging, there must exist
some evaluation of the gates which is consistent with 2n−m input strings. We now define a variety using m
polynomials as follows. Each polynomial checks that the input is consistent with the evaluations of a single
gate. Since every such polynomial depends on at most k variables, and it can be taken multilinear, it has
degree at most k. Thus we obtained variety of size 2n−m defined by degree k polynomials on which f is
constant. So it must be that n−m < ρn⇒ m > (1− ρ)n.

By Proposition 7, any such extractor cannot be computed by linear sized logarithmic depth circuits of
fan-in 2.
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