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Abstract

We prove a lower bound on the communication complexity of computing the n-fold xor of
an arbitrary function f , in terms of the communication complexity and rank of f . We prove

that D(f⊕n) ≥ n ·
(

Ω(D(f))
log rk(f)

− log rk(f)
)
, where here D(f), D(f⊕n) represent the deterministic

communication complexity, and rk(f) is the rank of f . Our methods involve a new way to use
information theory to reason about deterministic communication complexity.

1. Introduction

How is the complexity of computing a Boolean function f on 1 input related to the complexity
of computing f on n inputs? In this work, we give new lower bounds for the deterministic commu-
nication complexity of computing f on n inputs, making the first progress on this question in many
years. We refer the reader to the textbooks [KN97, RY20] for the broader context surrounding
these problems and the model of communication complexity.

Given a function f : X × Y → {0, 1}, define the functions

fn(x1, . . . , xn, y1, . . . , yn) = f(x1, y1), f(x2, y2), . . . , f(xn, yn),

f⊕n(x1, . . . , xn, y1, . . . , yn) = f(x1, y1)⊕ f(x2, y2)⊕ . . .⊕ f(xn, yn).

So, fn computes f on n distinct inputs, and f⊕n computes the parity of the outputs of f . Because
every protocol computing fn is also a protocol for computing f⊕n, the complexity of computing f⊕n

can only be smaller. An important example to keep in mind is when x, y are bits and f(x, y) = x⊕y.
Then the communication complexity of f and f⊕n are both 2, so there is no increase in the
complexity of the xor for such functions.

The communication complexity of a function f is related to the number of monochromatic
rectangles needed to cover the inputs to f . A monochromatic rectangle is a pair A ⊆ X , B ⊆ Y
such that f is constant when restricted to A×B. Let D(f) denote the communication complexity
of f , and let C(f) denote the minimum number of monochromatic rectangles needed to cover the
inputs of f . It is a standard fact that D(f) ≥ logC(f). Prior to our work, the best known result
concerning the complexity of computing these functions was proved by Feder, Kushilevitz, Naor
and Nisan [FKNN95], who showed that when

√
D(f) > log log(|X | · |Y|), D(fn) grows with n:
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Theorem 1 ([FKNN95]). D(fn) ≥ logC(fn) ≥ n · (
√
D(f)− log log(|X | · |Y|)).

Another important parameter of f is its rank. The function f can be viewed as a Boolean matrix
M whose (x, y)’th entry is (−1)f(x,y). We write rk(f) to denote the rank of this matrix. Because
M has ±1 entries, it can have at most 2rk(f) distinct rows and at most 2rk(f) distinct columns. This
observation leads to the following corollary of Theorem 1:

Corollary 2. D(fn) ≥ n · (
√
D(f)− log rk(f)− 1).

There have been a number of results concerning the randomized communication complexity
of fn and f⊕n in recent years. These results rely on definitions from information complexity
and simulations of protocols that have small information complexity. See [SK87, Raz92, Raz95,
CSWY01, BJKS02, JRS03, BBCR10, HJMR10, BR11, Bra15, Kol16, She18, JPY12, BRWY13b,
BRWY13a, Yu22, GKR16, RR15, IR24]. However, communication complexity is a model where
the deterministic and randomized complexity can be quite far from each other. For example,
the randomized communication complexity of the equality function is a constant, but there is no
deterministic protocol that beats the performance of the trivial protocol.

In fact, a number of connections between the model of communication complexity and other
models of computation are only meaningful when using deterministic protocols. A good example
is the connection between circuit depth and communication complexity observed by Karchmer and
Wigderson [KW90]. The randomized communication complexity of every Karchmer-Wigderson
game is small, because the game can efficiently be solved by hashing. So, lower bounds on cir-
cuit depth can only be obtained by studying deterministic communication complexity. Karchmer,
Raz and Wigderson [KRW95] conjectured that the communication complexity of this problem in-
creases when the function is composed with itself. Recently, there have been attempts toward this
conjecture and on understanding Karchmer-Wigderson games using ideas from information theory
[GMWW17, MW19]. If the conjecture is true, this would imply that there is no way to simulate
every polynomial time algorithm in logarithmic time with a parallel algorithm. Achieving such tan-
talizing results motivates us to study the questions about deterministic communication complexity
we consider in this paper.

Before the present paper, techniques from information theory had not led to results about the
deterministic communication complexity of fn or f⊕n. That is because known methods to simulate
protocols with small information lead to simulations that introduce errors, even if the protocols
being simulated do not make errors. In the present paper, we use information theory to obtain
results about deterministic communication complexity without introducing any errors. That is the
key technical contribution of our work. Our proofs are short, but they circumvent a barrier to
applying information theory in the setting of deterministic communication protocols.

Lovász and Saks [LS88] conjectured that there is a constant c such that D(f) ≤ (log rk(f))c).
This is called the log-rank conjecture. To date, the best known upper bound is D(f) ≤

√
rk(f)

[Lov14, ST23], and it is known that there are f with D(f) ≥ (log rk(f))2−o(1) [GPW18]. Recall
that D(f) ≥ log rk(f). Our main result gives stronger lower bounds when D(f) ≫ (log rk(f))2:

Theorem 3. D(f⊕n) ≥ logC(f⊕n) ≥ n ·
(

Ω(D(f))
log rk(f) − log rk(f)

)
.

In comparison to Theorem 1, our result gives lower bounds even for computing the xor f⊕n.
The key new step of our proof is the following theorem, whose proof uses the sub-additivity of
entropy in an essential way:
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Theorem 4. If f⊕n has a monochromatic rectangle of size 2k, then f has a monochromatic rect-
angle of size 2k/n−2.

The above theorem allows us to use a monochromatic rectangle of large density in f⊕n to find
a monochromatic rectangle of even larger density in f . Combined with some reasoning about the
rank of the function, we are able to use Theorem 4 to obtain a deterministic protocol that proves
Theorem 3. In the rest of this paper, we give the details of the proofs of these two theorems.

2. Preliminaries and Notation

For a variable X = X1, . . . , Xn, we write X<i to denote X1, . . . , Xi−1. We define X>i similarly.
All logarithms are taken base 2. We recall some basic definitions regarding entropy of random
variables. Let A be a random variable distributed according to p(a). The entropy of A is defined
as

H(A) := E
p(a)

[
log

1

p(a)

]
.

Proposition 5. For any random variable A with finite support, we have H(A) ≤ log |supp(A)|,
with equality if A is distributed according to the uniform distribution.

If A and B are two jointly distributed random variables distributed according to p(ab) then the
entropy of A conditioned on B is defined as

H(A|B) := E
p(a,b)

[
log

1

p(a|b)

]
.

The entropy of jointly distributed random variables satisfy the chain rule:

H(A,B) = H(A) +H(B|A).

Additionally, it is known that the conditional entropy of a random variable cannot exceed its
entropy.

Lemma 6. For any two jointly distributed random variables, A,B, we have H(A|B) ≤ H(A), with
equality if A and B are independent.

We need the following basic fact about rank:

Proposition 7. For any two matrices A1 and A2, we have rk(A1 +A2) ≤ rk(A1) + rk(A2).

We need the following lemma that shows that a protocol with a small number of leaves can be
computed by a protocol with small communication (see [RY20], Theorem 1.7).

Lemma 8. If π is a deterministic protocol with ℓ leaves, there exists a deterministic protocol
computing π(x, y) with communication at most ⌈2 log3/2 ℓ⌉.
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3. Proof of Theorem 4

Let R be a monochromatic rectangle for f⊕n of size 2k, and let (X,Y ) ∈ R be uniformly random.
Because R is a rectangle, X and Y are independent. Using the chain rule, we get

k = H(XY ) = H(X) +H(Y ) (because X,Y are independent)

=

n∑
i=1

H(Xi|X<i) +H(Yi|Y>i) (by the chain rule)

=

n∑
i=1

H(Xi|X<iY>i) +H(Yi|X<iY>iXi) (because X,Y are independent)

=

n∑
i=1

H(XiYi|X<iY>i). (by the chain rule)

This implies there exist i, x<i, y>i such that

H(XiYi|x<iy>i) ≥ k/n.

Define the random variables U = f(x1, Y1) ⊕ . . . ⊕ f(xi−1, Yi−1) and V = f(Xi+1, yi+1) ⊕ . . . ⊕
f(Xn, yn). By the chain rule, and since U, V are bits, we get

H(XiYi|x<iy>iUV ) + 2 ≥ H(XiYi|x<iy>iUV ) +H(UV |x<iy>i)

= H(XiYiUV |x<iy>i)

≥ H(XiYi|x<iy>i)

≥ k/n,

so there is some fixed value of u, v such that

H(XiYi|x<iy>iuv) ≥ k/n− 2.

The desired rectangle is the support of (Xi, Yi) conditioned on this fixed value of (x<i, y>i, u, v),
which we call T . Because (X,Y ) is distributed uniformly in R, the distribution of (Xi, Yi) con-
ditioned on (x<i, y>i, u, v) is a product distribution, and so T is a rectangle. By Proposition 5,
|T | ≥ 2k/n−2. Because each input (xi, yi) ∈ T corresponds to some input (x, y) ∈ R with f⊕n(x, y)
fixed, and we have fixed x<i, y>i and the xor of the function value in the first i − 1 as well as the
last n− i coordinates, f(xi, yi) is determined within T , and T is a monochromatic rectangle of f .

4. Proof of Theorem 3

The proof uses Theorem 4 and standard ideas along the lines of [NW95] to obtain a protocol
for f . We shall prove that f has a protocol tree whose number of leaves is bounded by

2O((logC(f⊕n)1/n+log rk(f))·log rk(f)) (1)

By applying Lemma 8 to this protocol, we obtain a protocol with communication

O

(
(logC(f⊕n)1/n + log rk(f)) log rk(f)

)
≥ D(f),
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which proves that

logC(f⊕n)1/n ≥ Ω(D(f))

log rk(f)
− log rk(f),

yielding the theorem.
We prove the bound by induction on |X | · |Y| and rk(f). If rk(f) < 5, or |X | · |Y| ≤ 1, we obtain

a protocol with a constant number of leaves. Otherwise, by averaging, f⊕n has a monochromatic
rectangle of size

|X |n · |Y|n

C(f⊕n)
.

Theorem 4 then implies that f contains a monochromatic rectangle R of size at least

|X | · |Y|
4 · C(f⊕n)1/n

.

We can use R to partition the matrix corresponding to f as follows[
R A
B Z

]
.

Since R has rank 1, we have

rk(f) ≥ rk

([
0 A
B Z

])
− 1 (Proposition 7)

≥ rk
([
0 A

])
+ rk

([
0
B

])
− 1 (by Gaussian elimination)

≥ rk
([
R A

])
+ rk

([
R
B

])
− 3. (Proposition 7)

So, we must have either

rk(
[
R A

]
) ≤ (rk(f) + 3)/2, (2)

or

rk
([

R
B

])
≤ (rk(f) + 3)/2.

If Equation (2) holds, Alice sends a bit to Bob indicating whether her input is consistent with
R. Otherwise, Bob sends a bit indicating whether his input is consistent with R. Without loss of
generality, assume that Equation (2) holds.

Let f0 and f1 denote the sub-functions of f obtained by restricting to
[
R A

]
and

[
B Z

]
respectively. Since every rectangle cover of f⊕n yields a rectangle cover of f⊕n

0 and a rectangle
cover of f⊕n

1 , we have
max{C(f⊕n

0 ), C(f⊕n
1 )} ≤ C(f⊕n).

If Alice’s input is consistent with R, we may repeat the argument with the function f0 which
satisfies rk(f0) ≤ (rk(f) + 3)/2 ≤ 4rk(f)/5, so long as rk(f) ≥ 5. Otherwise, if Alice’s input is
inconsistent with R, we repeat the argument with the function f1 which has at most

|X | · |Y| ·
(
1− 1

4 · C(f⊕n)1/n

)
5



inputs.
The number of recursive steps where the rank reduces by a factor of 4/5 is at most O(log rk(f)).

Moreover, since the matrix corresponding to f has at most 2rk(f) distinct rows and columns, the
number of steps where the input space shrinks by a factor of (1− 1

4·C(f⊕n)1/n
) is at most 8 · rk(f) ·

C(f⊕n)1/n. That is because after so many steps the number of inputs is at most

22·rk(f) ·
(
1− 1

4 · C(f⊕n)1/n

)8rk(f)·C(f⊕n)1/n

≤ 22rk(f) · e−2rk(f) < 1.

The number of leaves in the protocol we have designed is at most(
8 · rk(f) · C(f⊕n)1/n +O(log rk(f))

O(log rk(f))

)
≤ 2O((logC(f⊕n)1/n+log rk(f)) log rk(f)),

since C(f⊕n) ≥ 1. This proves Equation (1).
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