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You are not required to turn in exercises. They are here if you want
to practice your understanding of the concepts we discussed in class.

1. In this exercise, you will prove the Schwartz-Zippel lemma which
says that a low-degree polynomial cannot have too many roots.

(a) Let g(x) ∈ Fq[x1, x2, . . . , xn] be a non-zero polynomial where
the individual degree of each variable is at most q − 1. Show
that there exists a point a ∈ Fn

q s.t. g(a) 6= 0. (Hint: Use induc-
tion on the number of variables.)

(b) Let f (x) ∈ Fq[x1, x2, . . . , xn] be a non-zero polynomial of total
degree d < q. Suppose f (x) = fd(x) + fd−1(x) + · · · + f0(x)
where fi(x) is homogeneous1 degree i component of f . 1 A homogenous polyomial of degree k

only has terms of degree exactly k.
i. Show that there exists some a∗ ∈ Fn

q s.t. fd(a∗) 6= 0.

ii. For z ∈ Fn
q , let ` = {z + λa∗ : λ ∈ Fq} be the line through

z in direction a∗. Show that f can have at most d roots on the
line `.

iii. Show that there are exactly qn−1 lines in direction a∗ and
they partition the space Fn

q .

iv. Combine the above observations to show that

Pr
z∈Fn

q
[ f (z) = 0] ≤ d

q
.

2. In the class we have seen how to construct matching vector fam-
ilies (MVFs) from low-degree polynomial representations of OR
mod m. In this exercise, you will show how to construct MVFs
from sparse representations of OR mod m over {−1, 1} basis.
Suppose p(x) ∈ Zm[x1, x2, . . . , xn] is a polynomial of sparsity2 s s.t. 2 Sparsity is the number of monomials

with non-zero coefficients.
(a) p(x) = 0 mod m if x = (1, 1, . . . , 1) and

(b) p(x) 6= 0 mod m if x ∈ {−1, 1}n \ {(1, 1, . . . , 1)}.

Show that there exists a MVF over Zs
m of size 2n.

3. In this exercise you will prove the edge isoperimetric inequality
for the hypercube. Let G = ({0, 1}n, E) be the hypercube graph
where (x, y) ∈ E iff x, y differ in exactly one coordinate. Let S ⊂
{0, 1}n and let E(S, S) denote the number of edges with both end
points in S.
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(a) Let S0 = {x ∈ S : x1 = 0} and S1 = {x ∈ S : x1 = 1}. Show
that

E(S, S) = E(S0, S0) + E(S1, S1) + E(S0, S1).

(b) Show that E(S0, S1) ≤ min(|S0|, |S1|).
(c) Use induction on the dimension n, to prove that

E(S, S) ≤ 1
2
|S| log2 |S|.

(d) Show that the above inequality is tight for subcubes.

4. In this exercise, you will show how to construct 2-query LDCs
from q-query LDCs. Let C : {−1, 1}k → {−1, 1}n be a 4-query
LDC. Let M1, M2, . . . , Mk be q-matchings of size at least Ω(n) s.t.
for every i ∈ [k] and for every edge (j1, j2, j3, j4) ∈ Mi,

xi = C(x)j1 C(x)j2 C(x)j3 C(x)j4 .

Define C′ : {−1, 1}k → {−1, 1}N where N = nt, C′(x) = C(x)⊗t

and t =
√

n.

(a) Fix i ∈ [k]. Pick t =
√

n elements at random from [n] (with
repetition). Show that with constant probability you will pick at
least two vertices of an edge of Mi.

(b) Use the above fact to construct 2-matchings M′1, M′2, . . . , M′k on
[N] = [n]t of size Ω(N) s.t. for every i ∈ [k] and every edge
(a, b) ∈ M′i ,

xi = C′(x)aC′(x)b.

(c) By applying the 2-query exponential lower bound for C′, con-
clude that

n & (k/ log k)2.

5. In pseudorandomness, we need to generate a sequence of n bits
X1, X2, . . . , Xn which are k-wise independent (and uniform) using
as little truly random bits as possible. We want a map (called a
pseudorandom generator) G : Σr → Σn s.t. if (X1, X2, . . . , Xn) =

G(U) for a uniformly random U ∈ Σr, then X1, X2, . . . , Xn are k-
wise independent and uniform. The goal is to construct an explicit
map G where r (called the seed length) is as small as possible. In
this exercise, you will show how to do this using error-correcting
codes.

(a) Suppose G : Fr → Fn is defined as G(u) = (〈vi, u〉)i∈[n]
for some vi ∈ Fr s.t. every k vectors among v1, v2, . . . , vn are
indepedent.. Show that (X1, X2, . . . , Xn) = G(U) are k-wise
independent and uniform if U is chosen uniformly at random
from Fr.
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(b) Let C ⊂ Fn be a linear error correcting code of codimension
r (i.e., dim(C) = n − r) and distance at least k + 1. Let Hr×n

be the parity check matrix of C, i.e., C = {x ∈ Fn : Hx = 0}.
Let v1, v2, . . . , vn be the columns of H. Show that every k vectors
among v1, v2, . . . , vn are linearly independent.

(c) Suppose q ≥ n. Show that there exists a psuedorandom gen-
erator G : Fk

q → Fn
q which generates k-wise independent and

uniform symbols. (Hint: Reed-Solomon codes) Let n = 2m. BCH code in Fn
2 of distance

D is obtained by taking all codewords
with F2-coordinates from the Reed-
Solomon code in Fn

n of distance D.
Clearly, it will have distance at least D.
It is non-trivial to show that it will have
codimension at most d D−1

2 e log n. For
constant D, BCH codes nearly achieve
the Hamming bound we proved in
the beginning of the course. So they
are nearly optimal binary codes for
constant distance.

(d) Suppose there is a code over F2 with codimension d k
2e log n +

O(k) and distance ≥ k + 1 (BCH codes achieve this). Show that
this implies that one can generate n k-wise independent and
uniform bits starting from d k

2e log n + O(k) truly random bits!
Thus for small k, we have an exponential improvement!

6. In this exercise, you will construct ε-biased sets from codes. A
subset S ⊂ Fk

2 is called an ε-biased set if for every z ∈ Fk
2 \ {0},∣∣∣Ex∈S[(−1)〈z,x〉]

∣∣∣ ≤ ε.

Note that S = Fk
2 is 0-biased. Our goal is to construct an ε-biased

set of small size. Suppose C : Fk
2 → Fn

2 be an linear code s.t. every
codeword has Hamming weight between ( 1−ε

2 )n and ( 1+ε
2 )n.3 Let 3 This implies that minimum distance

is at least ( 1
2 − ε)n, but this is a little

stronger.
Gn×k be the generator matrix of C i.e. C = {Gx : x ∈ Fk

2}. Let
u1, u2, . . . , un be the rows of G.

(a) Show that S = {u1, u2, . . . , un} ⊂ Fk
2 is an ε-biased set.

(b) Show that there exist ε-biased sets of size O(k/ε2).


