Exercise List 2 Sivakanth Gopi Novermber 15, 2019

You are not required to turn in exercises. They are here if you want to practice your understanding of the concepts we discussed in class.

- 1. In this exercise, you will prove the Schwartz-Zippel lemma which says that a low-degree polynomial cannot have too many roots.
 - (a) Let $g(x) \in \mathbb{F}_q[x_1, x_2, ..., x_n]$ be a non-zero polynomial where the individual degree of each variable is at most q - 1. Show that there exists a point $a \in \mathbb{F}_q^n$ s.t. $g(a) \neq 0$. (Hint: Use induction on the number of variables.)
 - (b) Let f(x) ∈ F_q[x₁, x₂,..., x_n] be a non-zero polynomial of total degree d < q. Suppose f(x) = f_d(x) + f_{d-1}(x) + ··· + f₀(x) where f_i(x) is homogeneous¹ degree i component of f.
 - i. Show that there exists some $a^* \in \mathbb{F}_q^n$ s.t. $f_d(a^*) \neq 0$.
 - ii. For $z \in \mathbb{F}_q^n$, let $\ell = \{z + \lambda a^* : \lambda \in \mathbb{F}_q\}$ be the line through z in direction a^* . Show that f can have at most d roots on the line ℓ .
 - iii. Show that there are exactly q^{n-1} lines in direction a^* and they partition the space \mathbb{F}_q^n .
 - iv. Combine the above observations to show that

$$\Pr_{z\in\mathbb{F}_q^n}[f(z)=0]\leq\frac{d}{q}.$$

- In the class we have seen how to construct matching vector families (MVFs) from low-degree polynomial representations of OR mod *m*. In this exercise, you will show how to construct MVFs from sparse representations of OR mod *m* over {−1,1} basis. Suppose *p*(*x*) ∈ Z_{*m*}[*x*₁, *x*₂, ..., *x*_n] is a polynomial of sparsity² *s* s.t.
 - (a) $p(x) = 0 \mod m$ if x = (1, 1, ..., 1) and
 - (b) $p(x) \neq 0 \mod m$ if $x \in \{-1, 1\}^n \setminus \{(1, 1, \dots, 1)\}.$

Show that there exists a MVF over \mathbb{Z}_m^s of size 2^n .

3. In this exercise you will prove the edge isoperimetric inequality for the hypercube. Let $G = (\{0,1\}^n, E)$ be the hypercube graph where $(x, y) \in E$ iff x, y differ in exactly one coordinate. Let $S \subset \{0,1\}^n$ and let E(S,S) denote the number of edges with both end points in *S*.

² Sparsity is the number of monomials with non-zero coefficients.

(a) Let $S_0 = \{x \in S : x_1 = 0\}$ and $S_1 = \{x \in S : x_1 = 1\}$. Show that

$$E(S,S) = E(S_0,S_0) + E(S_1,S_1) + E(S_0,S_1).$$

- (b) Show that $E(S_0, S_1) \le \min(|S_0|, |S_1|)$.
- (c) Use induction on the dimension *n*, to prove that

$$E(S,S) \leq \frac{1}{2}|S|\log_2|S|.$$

- (d) Show that the above inequality is tight for subcubes.
- 4. In this exercise, you will show how to construct 2-query LDCs from *q*-query LDCs. Let $C : \{-1,1\}^k \to \{-1,1\}^n$ be a 4-query LDC. Let M_1, M_2, \ldots, M_k be *q*-matchings of size at least $\Omega(n)$ s.t. for every $i \in [k]$ and for every edge $(j_1, j_2, j_3, j_4) \in M_i$,

$$x_i = C(x)_{j_1}C(x)_{j_2}C(x)_{j_3}C(x)_{j_4}$$

Define $C' : \{-1,1\}^k \to \{-1,1\}^N$ where $N = n^t$, $C'(x) = C(x)^{\otimes t}$ and $t = \sqrt{n}$.

- (a) Fix *i* ∈ [*k*]. Pick *t* = √*n* elements at random from [*n*] (with repetition). Show that with constant probability you will pick at least two vertices of an edge of *M_i*.
- (b) Use the above fact to construct 2-matchings M'_1, M'_2, \ldots, M'_k on $[N] = [n]^t$ of size $\Omega(N)$ s.t. for every $i \in [k]$ and every edge $(a, b) \in M'_i$,

$$x_i = C'(x)_a C'(x)_b.$$

(c) By applying the 2-query exponential lower bound for *C*′, conclude that

$$n \gtrsim (k/\log k)^2$$
.

- 5. In pseudorandomness, we need to generate a sequence of *n* bits X_1, X_2, \ldots, X_n which are *k*-wise independent (and uniform) using as little truly random bits as possible. We want a map (called a pseudorandom generator) $G : \Sigma^r \to \Sigma^n$ s.t. if $(X_1, X_2, \ldots, X_n) = G(U)$ for a uniformly random $U \in \Sigma^r$, then X_1, X_2, \ldots, X_n are *k*-wise independent and uniform. The goal is to construct an explicit map *G* where *r* (called the seed length) is as small as possible. In this exercise, you will show how to do this using error-correcting codes.
 - (a) Suppose $G : \mathbb{F}^r \to \mathbb{F}^n$ is defined as $G(u) = (\langle v_i, u \rangle)_{i \in [n]}$ for some $v_i \in \mathbb{F}^r$ s.t. every *k* vectors among v_1, v_2, \ldots, v_n are independent. Show that $(X_1, X_2, \ldots, X_n) = G(U)$ are *k*-wise independent and uniform if *U* is chosen uniformly at random from \mathbb{F}^r .

- (b) Let $C \subset \mathbb{F}^n$ be a linear error correcting code of codimension r (i.e., dim(C) = n r) and distance at least k + 1. Let $H_{r \times n}$ be the parity check matrix of C, i.e., $C = \{x \in \mathbb{F}^n : Hx = 0\}$. Let v_1, v_2, \ldots, v_n be the columns of H. Show that every k vectors among v_1, v_2, \ldots, v_n are linearly independent.
- (c) Suppose *q* ≥ *n*. Show that there exists a psuedorandom generator *G* : 𝔽^k_q → 𝔽ⁿ_q which generates *k*-wise independent and uniform symbols. (Hint: Reed-Solomon codes)
- (d) Suppose there is a code over \mathbb{F}_2 with codimension $\lceil \frac{k}{2} \rceil \log n + O(k)$ and distance $\geq k + 1$ (BCH codes achieve this). Show that this implies that one can generate *n k*-wise independent and uniform bits starting from $\lceil \frac{k}{2} \rceil \log n + O(k)$ truly random bits! Thus for small *k*, we have an exponential improvement!
- In this exercise, you will construct ε-biased sets from codes. A subset S ⊂ 𝔽^k₂ is called an ε-biased set if for every z ∈ 𝔽^k₂ \ {0},

$$\left|\mathbb{E}_{x\in S}[(-1)^{\langle z,x\rangle}]\right|\leq \varepsilon.$$

Note that $S = \mathbb{F}_2^k$ is 0-biased. Our goal is to construct an ε -biased set of small size. Suppose $C : \mathbb{F}_2^k \to \mathbb{F}_2^n$ be an linear code s.t. every codeword has Hamming weight between $(\frac{1-\varepsilon}{2})n$ and $(\frac{1+\varepsilon}{2})n.^3$ Let $G_{n\times k}$ be the generator matrix of C i.e. $C = \{Gx : x \in \mathbb{F}_2^k\}$. Let u_1, u_2, \ldots, u_n be the rows of G.

- (a) Show that $S = \{u_1, u_2, ..., u_n\} \subset \mathbb{F}_2^k$ is an ε -biased set.
- (b) Show that there exist ε -biased sets of size $O(k/\varepsilon^2)$.

Let $n = 2^m$. BCH code in \mathbb{F}_2^n of distance D is obtained by taking all codewords with \mathbb{F}_2 -coordinates from the Reed-Solomon code in \mathbb{F}_n^n of distance D. Clearly, it will have distance at least D. It is non-trivial to show that it will have codimension at most $\lceil \frac{D-1}{2} \rceil \log n$. For constant D, BCH codes nearly achieve the Hamming bound we proved in the beginning of the course. So they are nearly optimal binary codes for constant distance.

³ This implies that minimum distance is at least $(\frac{1}{2} - \varepsilon)n$, but this is a little stronger.