
Lecture 1: Error Correcting Codes
Anup Rao

September 25, 2019

Error correcting codes are mathematical objects that play a fun-
damental role in technology. In a nutshell, they allow for the reliable
storage and transmission of information by giving us the capability
to recover from physical corruptions. Beyond this obvious appli- You are almost certainly carrying an er-

ror correcting code in your pocket. Your
phone uses one to manage its storage,
and another to handle communication
over the airwaves.

cation, codes are important conceptual objects that have been used
all over theoretical computer science. The study of error correcting
codes has led to beautiful mathematics, and there are still many open
questions that remain unanswered. What I like about the theory of error

correcting codes: their study lies in
the intersection of combinatorics,
probability, geometry and algebra. So, if
you start thinking about codes, you end
up thinking about all the things I like
thinking about!

The aim of this class is to give a brief introduction to the theory of
error correcting codes — just enough so that we can make the leap to
discussing more advanced research topics near the end of the term.

Defining codes

A code is a subset of strings that are far apart. Let Σ be a finite set.
Given two strings x, y ∈ Σn, define the Hamming distance As we shall see, it is easiest to construct

codes over large alphabets, but codes
over a small alphabet are the most
useful.

∆(x, y) = |{i ∈ [n] : xi 6= yi}|.

The Hamming distance is the number of coordinates where x, y are
not the same. A code with distance d is a subset C ⊆ Σn, such that
for any two distinct elements x, y ∈ C, we have ∆(x, y) ≥ d. The
parameter n is called the block-length of the code, and Σ is called the
alphabet of the code. We usually write q = |Σ| to denote the size of
the alphabet. Of special interest is the case Σ = {0, 1}. In this case,
we call the code a binary code. So far, you see that the definitions

are very combinatorial. The plot will
thicken when we begin to focus on
algebraic definitions that guarantee
good distance.

Why are codes useful? They are designed to tolerate corruptions.
Suppose C = {c1, . . . , c`} ⊆ {0, 1}n is a set of binary strings of
length n. Suppose you want to encode an integer in [`]. The most
naive way to do this would be write down the integer in binary. But
then if a single written bit is later corrupted, you would be unable to
recover the integer that was stored. Instead, we should encode the
integer i as ci. Now, the point is that if at most (d− 1)/2 symbols are
corrupted, you can still recover ci, and so i. What if the symbols are erased rather

than corrupted? Suppose less than d
of the symbols of the codeword are
replaced by a *. Then it is easy to
see that we can recover the original
codeword — so a code of distance d can
tolerate upto d/2 corruptions, and d
erasures.

Some more definitions are useful here. Given x ∈ Σn, write B(x, d)
to denote the ball of strings that are within distance d of x:

B(x, d) = {y ∈ Σn : ∆(x, y) ≤ d}.

lecture 1: error correcting codes 2

We write vol(d) to denote the size |B(x, d)| of this ball (note that the
volume does not depend on x). We have

vol(d) =
d

∑
i=0

(
n
i

)
(q− 1)i.

Then another way to assert that the code has distance d is to write
that for all distinct x, y ∈ C, B(x, (d− 1)/2) and B(y, (d− 1)/2) are
disjoint.

For a code to actually be useful, we need to have algorithms that
allow for efficiently encoding messages as a codeword, and for ef-
ficiently decoding messages. So, error correcting codes are often
defined with a more complicated definition, as follows. We would
like to have functions

E : Σk → Σn,

and
D : Σn → Σk,

such that for all u ∈ Σk, w ∈ Σn with ∆(E(u), w) ≤ e, we have
D(w) = u. In words, if we encode u using E, and then at most e For E, D to be practical, they should

also be efficiently computable. This is
an issue we deal with in later lectures.

symbols of E(u) are corrupted, the decoding is guaranteed to recover
u.

For the above scheme to work, it is necessary that E(Σk) should be
a code of distance bigger than 2e. Otherwise, if there are two strings
at distance at most 2e in the image, we can find a string in between
these two that cannot be properly decoded. Of course there are many other notions

of valid decoding that make sense here.
We could ask for the decoding to work
only when the errors are random, or
to be able to recover some part of the
message rather than the whole message,
just to give examples. We shall issue
some of these issues later.

Usually, we think of the alphabet size |Σ| = q as being fixed, and
n as growing. We think of the code as a family of sets Cn ⊆ Σn, one
for each n. Then R = k/n = (logq |C|)/n is called the rate of the
code. δ = d/n is called the relative distance of the code. We would like
to find codes that simultaneously maximize the rate and the relative
distance. The challenge is that these two parameters are inherently
opposed to each other — the more codewords you pack into the
space, the harder it is to ensure that they are far apart.

Some (not so great) Codes

Enough talk, let us give some examples of codes.

Repetition code Consider the code that encodes a message by repeat-
ing each symbol d times. So, when d = 2, we encode 12112 by
1122111122. This code has distance d. The rate of the code is 1/d.
This is a terrible code.

lecture 1: error correcting codes 3

Parity Check Code Consider the code obtained by encoding a message
in Fk

2 by encoding (x1, . . . , xk) with (x1, . . . , xk, x1 + x2 + . . . xk).
Another way to describe the codewords is as the set of strings
y ∈ Fn

2 with y1 + · · ·+ yn = 0. The distance is d = 2. So, we have
k + d = n + 1. Unfortunately d is quite small. We would really like
to have d be a constant fraction of n.

Singleton bound

Clearly, for large n, we cannot have a code rate 1 and rela-
tive distance 1 — if the rate is 1, all strings must be included in the
code, but then the relative distance can be at most 1/n for the worst
pairs.

Let us investigate the tradeoffs between the rate and relative dis-
tance. The pigeonhole principle already implies the following basic
bound:

Theorem 1 (Singleton Bound). If C ⊆ Σn be a code of size |C| = |Σ|k ,
and distance d, then we have k + d ≤ n + 1. In other words, the rate and
relative distance must satisfy R + δ ≤ 1 + 1/n.

Proof. Suppose this is not true, and that k > n − d + 1. Then by
the pigeonhole principle, there are two codewords x 6= y that are
equal on the first n − d + 1 coordinates. These two codewords have There are qk pigeons, namely the

codewords, and qn−d+1 < qk holes,
namely the values that the codewords
take in the first n− d + 1 coordinates.
Two pigeons must get mapped to the
same hole.

distance at most d− 1, contradicting the distance of the code.

The singleton bound gives us a basic limit about how much redun-
dancy we need to add to our code to tolerate errors. In fact, it is tight
— no better bound is possible if we do not take the alphabet size into
account. This is because there is an explicit code, the Reed-Solomon
code, which has alphabet size n, and k + d = n + 1. However, when
the alphabet size is smaller, the singleton bound is not so tight.

Estimating Volume

We are working with Hamming space, so key to understanding
the tradeoff between the parameters of a code is understanding the
quantity vol(d). A basic estimate is given by using the following
formula:

hq(ε) = (1− ε) logq

(1
1− ε

)
+ ε logq

(q− 1
ε

)
.

The quantity hq(ε) is proportional to the maximum entropy of a
random variable taking q values, subject to the constraint that the

lecture 1: error correcting codes 4

random variable must be equal to the first value with probability
at least 1 − ε. It turns out that when ε ≤ 1 − 1/q, hq(ε) ≥ ε and
limq→∞ hq(ε) = ε.

When d ≤ n(1− 1/q), we shall prove the estimates What happens when d ≥ n(1− 1/q)?

qn·hq(d/n)−O(logq n) ≤ vol(d) ≤ qn·hq(d/n). (1)

We shall prove these bounds on the volume in a later lecture. For
now, let us use it to give more bounds on codes.

Hamming bound

Our estimate for the volume of balls in the Hamming metric
immediately allows us to prove another lower bound:

Theorem 2 (Hamming Bound). If C ⊆ Σn is a code of distance d, then
we have |C| ≤ |Σ|n/vol((d− 1)/2).

Proof. If the distance of the code is d, then the balls of radius (d −
1)/2 centered around the codewords must all be disjoint. This gives
the bound.

In terms of the rate R and relative distance δ, using (1), the above
bound says that

R + hq(δ/2) ≤ 1 + O(logq(n)/n).

	Defining codes
	Some (not so great) Codes
	Singleton bound
	Estimating Volume
	Hamming bound

