
Lecture 10: Polar codes
Anup Rao

October 28, 2019

In this lecture, we return to the task of constructing (non-local)
codes over the binary alphabet. Recall that we have seen two kinds of
explicit codes — Reed-Solomon codes, which are optimal, but use a
larger alphabet, and expander codes, which use the binary alphabet
but do not have the optimal tradeoff between relative distance and
rate. Today, we discuss polar codes. These are binary codes developed
by Arikan that have the optimal tradeoff between rate and relative
distance, but the catch is that they only work when the errors are
promised to be random. A good reference for this stuff is this

text: https://cse.buffalo.edu/
faculty/atri/courses/coding-theory/

book/.

It will be convenient to use the tensor product of matrices to de-
scribe the code. Given two matrices A, B, their tensor product is

A⊗ B =

A1,1 · B A1,2 · B . . . A1,n · B
A2,1 · B A2,2 · B . . . A2,n · B

...
...

. . .
...

Am,1 · B Am,2 · B . . . Am,n · B

 .

If x = (x1, x2, . . . , xn) is a column vector, and X is the matrix whose
columns are x1, . . . , xn, then (A⊗ B)x is the vector obtained by com-
puting BXAᵀ and rewriting this as a vector.

Define the polarizing matrix P ∈ Fn×n
2 as

P =

[
1 1
0 1

]
⊗
[

1 1
0 1

]
⊗ · · · ⊗

[
1 1
0 1

]
,

t times. The matrix P is an invertible 2t × 2t matrix. In fact P2 = I.
We set n = 2t. The tensor structure of P allows us to compute Px
very quickly. Indeed, you can compute([1 1

0 1

]
⊗ P

)
x = (PX)

[
1 0
1 1

]
,

which gives a recursive algorithm for computing Px that runs in time
O(n log n).

The key property of these matrices that makes them useful for
protecting against random errors is that when Z ∈ Fn

2 is sampled
by picking each bit to be 1 independently with probability ε, then
almost all of the bits of PZ become polarized — except for a negligible
fraction of the coordinates of PZ, each coordinate is close to uniform
conditioned on previous coordinates, or determined by the previous
coordinates.

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/

lecture 10: polar codes 2

An unreasonable(?) assumption

To understand why polarization is such a useful property, let
us imagine for a second that we have perfect polarization. Say that
Z ∈ Fn

2 is an ε-noisy string if each bit of Z is sampled independently
and equal to 1 with probability ε.

Suppose Y = PZ, and for every coordinate i, we have

H(Yi|Y<i) ∈ {0, 1},

namely, the conditional entropy of each bit is either 0 or 1. Then,
since P is invertible, we have

n · h(ε) = H(Z) = H(Y) =
n

∑
i=1

H(Yi|Y<i) = ∑
i∈S

H(Yi|Y<i),

where here S is the set of coordinates where the conditional entropy
is 1. We must have |S| = n · h(ε). Intuitively, Z must be determined
by the coordinates of Y that corresponds to S. Indeed, given Y re-
stricted to the coordinates in S, we can reconstruct all the other coor-
dinates of Y, since every other coordinate is determined by the coor-
dinates of Y in S. Then we can recover Z = P−1Y. So, Y restricted to
S is an encoding of Z.

Now, let C ∈ Fn
2 be the subspace of dimension at least n− |S| such

that (Px)i = 0 for all i ∈ S. We shall prove that C is a code. Moreover,
since P2 = I, this code has a simple encoding function. Just take a
message u ∈ F

h(ε)·n
2 , and let v ∈ Fn

2 be the vector obtained by putting
the bits of u in the locations that corresponds to the high entropy
outputs of P. Then set the codeword to be Pv. We have P(Pv) = v, so
Pv ∈ C. Moreover, this is an injective map.

To see that C is a code, observe that given x + Z, we can recover
x as follows. Compute P(x + Z) = Px + PZ. Since x ∈ C, for every
i ∈ S, we must have

(P(x + Z))i = (Px)i + (PZ)i = (PZ)i = Yi.

So, we can recover Z from received word. Once we have recovered
Z, we can recover x from the received word. Thus, we obtain a code
with rate 1− h(ε), which is optimal.

Eliminating the assumption

In fact, something very close to the assumption we made in the
last section is true — almost all of the coordinates in the output have
entropy that is extremely close to either 0 or 1.

lecture 10: polar codes 3

Figure 1: An example of the polariza-
tion phenomenon. The mutual informa-
tion between X and the coordinates of
the output is shown. Most coordinates
have almost no information, or close
to one bit of information. This picture
was taken from this paper: http://www.
ijicic.org/ijicic-13-12027.pdf.

Given a particular ε and a parameter κ, let us call the set of cood-
inates i with κ ≤ hi ≤ 1− κ the set of κ-middle coordinates. These
are the set of coordinates where the entropy is κ-far from both 0 and
1. The key technical theorem is

Theorem 1. For every ε, δ > 0, there is a t0 > 0, such that as long as
t > t0, then the set of n−4-middle coordinates is of size at most δn.

Proving the theorem is delicate, at least at present. I was not able
to find a book-proof for it. So, we will not cover the full proof here. Erdős believed that God has a book

containing the most elegant proofs.
Whenever he saw a proof that he
believed came from the book, he would
call it a proof from The Book.

Let us see how to use Theorem 1 to get a code. Later we shall
return to giving some intuition for why the theorem is true. Let S
denote the set of coordinates that are in the middle. Let T denote the
set of coordinates where the entropy exceeds 1− n−4, and V denote
the set of coordinates where the entropy is at most n−4. We shall the
define the code to be the set of vectors x ∈ Fn

2 such that in Px, values
of x in T ∪ S is 0.

Each coordinate of T contributes at least h−1(1− 1/n4) ≥ 1− 1/n
to the entropy. So, we get (1− 1/n)|T| ≤ h(ε)n, proving that |T| ≤
h(ε)n(1 + 2/n) ≤ h(ε)n + 2. So we get,

|V| = n− |T|+ |S| ≥ n− h(ε)n− 2− δn ≥ n− h(ε)n− 2δn.

In other words, the rate of the code is (1− h(ε)− 2δ). Moreover, the
code can recover from errors, exactly as above. This is because during
the decoding algorithm, we will need to guess the values of coordi-
nates whose entropy is at most 1/n4. In each step, the decoder just

http://www.ijicic.org/ijicic-13-12027.pdf
http://www.ijicic.org/ijicic-13-12027.pdf

lecture 10: polar codes 4

guesses the more likely value. The probability of having a decoding
failure is at most

E
Y

[
∑
i∈V

h−1(H(Yi|Y<i))

]
= ∑

i∈V
E
Y

[
h−1(H(Yi|Y<i))

]
.

Now, two bad things can happen. The first is that H(Yi|Y<i) > 1/n2.
This happens with probability at most 1/n2 for each i, since the ex-
pected value of this quantity is at most 1/n4. The second bad thing is
that Yi does not take on the most likely value. But if the conditional
entropy is at most 1/n2, this happens with probability at most 1/n2,
since h(α) ≥ α. In total, the probability of decoding failure is at most
n(1/n2 + 1/n2) = 2/n2.

Some intuition for Theorem 1

Let us return to trying to understand why the polarization
should occur. Throughout this discussion, let ε, the noise rate, be an
arbitrary constant in between 0 and 1. Given a particular choice of t,
let hi be defined to be H(Yi|Y<i). We always have h1 + h2 + . . . + hn =

h(ε) · n.
Here is an observation:

Lemma 2. limt→∞ ∑n
i=1 hi(1− hi)/n = 0.

In words, the lemma says that the
average coordinate has conditional
entropy close to 0 or 1.

Let us sketch the proof. Consider a particular value of t, and let
us see what happens when t is increased by 1. Recall that Z is an
ε-noisy string, and we can compute the output in step t + 1 as

P ·
[

Z Z′
]
·
[

1 1
0 1

]
=
[
Y Y′

]
·
[

1 1
0 1

]
,

where Y and Y′ are independent identically distributed strings that
are the outputs after t polarization steps.

Now, what happens to the average ∑n
i=1 hi(1− hi)/n? Each term hi

that corresponds to H(Yi|Y<i) is replaced by two terms. One of them
corresponds to fi = H(Yi + Y′i |Y<i, Y′<i), and the second corresponds
to gi = H(Y′i |Y<i, Y′<i, Yi + Y′i). Since the map is invertible, we have
fi + gi = 2hi. On the other hand, it turns out that fi is very close to
2hi. So we see that

lecture 10: polar codes 5

hi(1− hi)−
fi(1− fi) + gi(1− gi)

2
=

f 2
i + g2

i
2

− h2
i

=
(fi + gi)

2 + (fi − gi)
2

4
− h2

i

=
(2hi)

2 + (fi − gi)
2

4
− h2

i

=
(fi − gi)

2

4
.

You can argue that fi > gi, so the average is always strictly de-
creasing. In fact, it is decreasing very quickly.

	An unreasonable(?) assumption
	Eliminating the assumption
	Some intuition for Theorem 1

