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In the last lecture, we have seen that we can construct locally
decodable codes from matching vector families. In this lecture, we
will construct matching vector families. Let us recall the definition
again.

Definition 1 (MVF). Let S ⊂ Zm \ {0} and let F = (U ,V) where
U = (u1, · · · , uk),V = (v1, · · · , vk) are lists of vectors ui, vi ∈ Zd

m. Then
F is called an S-MVF over Zd

m of size k (and dimension d) if ∀ i, j,

〈
ui, vj

〉= 0 if i = j

∈ S if i 6= j

If S is omitted, it is implied that S = Zm \ {0}.

We want to construct MVFs with |S|, m, d small while k should be
large. Typically, |S|, m are some fixed constants and k, d are growing.

The following lemma shows that when m is a prime, one cannot
have too many matching vectors.

Proposition 2. If m is a prime , then any MVF over Zd
m must have size

k ≤ 1 + dm−1.
Given two vectors x, y of dimensions
d1, d2 respectively, the tensor product
x ⊗ y is a d1d2-dimensional vector
given by (x ⊗ y)ij = xiyj. x⊗` denotes
x⊗ x⊗ · · · ⊗ x tensored ` times which
will have dimension d`1. Also note that
〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉 · 〈y1, y2〉.

Proof. Let U = (u1, . . . , uk) and V = (v1, . . . , vk) be the MVF. Con-
sider the k × k matrix A given by Aij =

〈
u⊗(m−1)

i , v⊗(m−1)
j

〉
=〈

ui, vj
〉m−1 . It is clear that rank(A) ≤ dm−1. By Femat’s little the-

orem, A is equal to Jk − Ik where Jk is the all ones matrix of size
k× k and Ik is the identity matrix of size k× k. Therefore rank(A) ≥
rank(Ik) − rank(Jk) = k − 1. Combining both the bounds we get
k ≤ 1 + dm−1.

With a little more effort, we can extend Lemma 2 to any prime
power m and also improve the bound slightly.

Proposition 3. If m is a prime power, then any MVF over Zd
m must have

size k ≤ 1 + (d+m−2
m−1 ).

Thus for any constant prime power m, the size of an MVF can
be only be polynomially larger than the dimension. The following
construction (which works even when m is not a prime power) shows
that the lower bound in Lemma 3 is nearly tight for constant m.
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Proposition 4. Let m ≥ 2 be any positive integer and let d ≥ m. Then
there exists an MVF over Zd

m of size k = ( d−1
m−1).

Proof. Let w1, . . . , wk be the set of all vectors in {0, 1}d−1 with Ham-
ming weight exactly m− 1. Let ui = vi = (1, wi) for i ∈ [k]. It is easy
to see that this is an MVF of size ( d−1

m−1).

Surprisingly, we can do much better if m is not a prime power!

Theorem 5 ([Gro99]). Let m = p1 p2 · · · pt where p1, p2 · · · , pt are
distinct primes with t ≥ 2, then there exists an explicitly constructible S-

MVF F in Zd
m of size k ≥ exp

(
Ω
(

(log d)t

(log log d)t−1

))
for some set S of size

|S| = 2t − 1.
The set S in Theorem 5 can be de-
scribed explicity as S = {a ∈ Zm : a
mod pi ∈ {0, 1} ∀ i ∈ [t]} \ {0}.

We will now prove this. The main ingredient is a polynomial
which represents the OR (disjunction) function. The OR function
is 1 if at least one of its inputs is 1, and 0 otherwise.

Polynomial representations of OR mod m

Definition 6 (Polynomial representation of OR mod m). A polynomial
p(x1, . . . , xn) represents ORn mod m (over {0, 1} basis) if:

1. p(0, 0, . . . , 0) = 0 mod m and

2. p(x) 6= 0 mod m for all non-zero x ∈ {0, 1}n.

We will now show how to get MVFs over Zm from polynomial
representations of OR mod m.

Lemma 7. Suppose p(x1, . . . , xn) is a polynomial representation of ORn

mod m of degree r. Then there exists an MVF over Zd
m of size k = 2n and

dimension d = (n+r
r ).

Proof. Let us define the matrix M whose rows and columns are in-
dexed by x, y ∈ {0, 1}n as

M(x, y) = p(x⊕ y) mod m = p(x1⊕ y1, x2⊕ y2, . . . , xn⊕ yn) mod m.

Note that the matrix M has 0’s on the diagonal and non-zero values
everywhere else. Therefore if rank of the matrix M is d, we can write
M(x, y) =

〈
ux, vy

〉
, where U = {ux : x ∈ {0, 1}n} and V = {vx : x ∈

{0, 1}n} form an MVF over Zd
m of size k = 2n.

We are now left to show that the rank of M is at most d = (n+r
r ).

Note that we can write xi ⊕ yi as a degree 2 multilinear polynomial,

xi ⊕ yi = xi + y + i− 2xiyi.

Therefore p(x ⊕ y) is a degree r polyominial in x variables (also a
degree r polynomial in y variables). So we can write p(x ⊕ y) =
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∑α:|α|≤r xαqα(y) for some polynomials qα(y) depending only on y.
If we set ux = 〈xα〉|α|≤r and vy = 〈qα(y)〉|α|≤r, we have M(x, y) =

p(x⊕ y) =
〈
ux, vy

〉
. The dimension d is the number of monomials in

x1, . . . , xn of degree at most r, which is (n+r
r ).

Thus low degree polynomial representations of OR mod m give
us good MVFs. Again, when m is a prime power, we cannot have
very good MVFs and thus there cannot be any low degree polyno-
mial representations of OR mod m.

Proposition 8. If m is a prime power and p(x1, . . . , xn) is a polynomial
representation of ORn mod m, then deg(p) ≥ n/(m− 1).

Proof Sketch. We will only prove this for prime m. By Fermat’s little
theorem q(x) = p(x)m−1 is exactly equal to the OR function i.e.
q(0, 0, . . . , 0) = 0 mod m and q(x) = 1 for all non-zero x ∈ {0, 1}n.
Every function f : 0, 1n → Fm has a unique multilinear polynomial
representation. Therefore q(x) = 1−∏n

i=1(1− xi) which has degree
n. Therefore p(x) has degree at least n/(m− 1).

When m is not a prime power, there are surprisingly low degree
polynomial representations for ORn mod m. For example when
m = 6, there is degree O(

√
n) polynomial representation!

Theorem 9 ([BBR94]). Let m = p1 p2 · · · pt be a product of t distinct
primes. Then there exists a polynomial representation of ORn mod m of
degree Om(n1/t).

Combining Theorem 9 with Lemma 7, we get the MVF promised
in Theorem 5. The best known lower bound on the degree of polyno-
mial representations of ORn mod m is much weaker. Therefore it is
still possible to construct much better LDCs using this approach.

Theorem 10 ([TB98]). Suppose m has t distinct prime factors. Then the de-
gree of a polynomial representating ORn mod m is at least Ωm((log n)

1
t−1 ).

We will prove Theorem 9 in the next lecture.
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