Lecture 12: Polynomial representing OR mod m

Sivakanth Gopi

November 4, 2019

In the last lecture, we have seen that we can construct matching vector families from low degree representations of OR $\bmod m$. In this lecture, we will construct construct low degree representations of OR

Definition 1 (Polynomial representation of OR $\bmod m$). A polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ represents $\operatorname{OR}_{n} \bmod m$ (over $\{0,1\}$ basis) if:

1. $p(0,0, \ldots, 0)=0 \bmod m$ and
2. $p(x) \neq 0 \bmod m$ for all non-zero $x \in\{0,1\}^{n}$.

We will now prove that there are (surprisingly) low degree polynomials representing $\mathrm{OR}_{n} \bmod m$ if m has multiple prime factors. Recall that when m is a prime power, we need degree at least $n /(m-1)$.

Theorem 2 ([BBR94]). Let $m=p_{1} p_{2} \cdots p_{t}$ be a product of t distinct primes. Then there exists a polynomial representation of $\mathrm{OR}_{n} \bmod m$ of degree $O_{m}\left(n^{1 / t}\right)$.

The best known lower bound on the degree of polynomial representations of $\mathrm{OR}_{n} \bmod m$ is much weaker.

Theorem 3 ([TB98]). Suppose m has t distinct prime factors. Then the degree of a polynomial representating $\mathrm{OR}_{n} \bmod m$ is at least $\Omega_{m}\left((\log n)^{\frac{1}{t-1}}\right)$.

To prove Theorem 2, we will need some number theoretic preliminaries.

Lemma 4 (Chinese Remainder Theorem (CRT)). Let $m=a b$ where a, b are coprime. Then the rings $\mathbb{Z} / m \mathbb{Z} \cong \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ are isomorphic and the map $x \mapsto(x \bmod a, x \bmod b)$ is an isomorphism. Because it is an isomorphism, given $x_{1} \in \mathbb{Z} / a \mathbb{Z}$ and $x_{2} \in \mathbb{Z} / b \mathbb{Z}$, there exists a unique $x \in \mathbb{Z} / m \mathbb{Z}$ s.t. $x \bmod a=x_{1}$ and $x \bmod b=x_{2}$.

By the CRT, we can think of $\mathbb{Z} / 6 \mathbb{Z}$ as the product of two rings $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. For example $5 \mapsto(1,2)$ under the above isomorphism.

Lemma 5. Let p be a prime and $n \geq 1$, then $(x+y)^{p^{n}}=x^{p^{n}}+y^{p^{n}}$ $\bmod p$.

Proof. We will prove the base case $n=1$. The general case follows from easy induction. By binomial theorem, $(x+y)^{p}=\sum_{i=0}^{p}\binom{p}{i} x^{i} y^{p-i}$.

If p is a prime, then every function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ can be represented exactly as a polynomial. But not every function $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ is a polynomial. Try to construct one such function. Hint: CRT.
$\binom{p}{i}=\frac{p(p-1) \ldots(p-i+1)}{i(i-1) \ldots 1}$ is divisible by p for $1 \leq i \leq p-1$ since the denominator doesn't contain any p multiples. Therefore $(x+y)^{p}=$ $x^{p}+y^{p} \bmod p$.

Lemma 6 (Lucas's theorem). Let p be a prime and a, b be some nonnegative integers. Suppose $a=a_{0}+a_{1} p+a_{2} p^{2}+\ldots$ and $b=b_{0}+$ $b_{1} p+b_{2} p^{2}+\ldots$ be the base p representation of a, b (Note that $0 \leq a_{i}, b_{i} \leq$ $p-1)$. Then,

$$
\binom{a}{b} \equiv \prod_{i \geq 0}\binom{a_{i}}{b_{i}} \quad \bmod p
$$

Here $\binom{u}{v}$ is defined to be 0 if $u<v$ and $\binom{0}{0}=1$.
Proof. Let x be some variable. We will write $(x+1)^{a} \bmod p$ in two different ways and compare coefficients to get the desired identity. By binomial theorem, $(x+1)^{a} \bmod p=\sum_{b=0}^{a}\left(\binom{a}{b} \bmod p\right) x^{b}$. We will now write $(x+1)^{a} \bmod p$ in a different way.

$$
\begin{aligned}
(x+1)^{a} \bmod p & =(x+1)^{\sum_{i} a_{i} p^{i}} \bmod p \\
& =\prod_{i \geq 0}(x+1)^{a_{i} p^{i}} \bmod p \\
& =\prod_{i \geq 0}\left(x^{p^{i}}+1\right)^{a_{i}} \bmod p \quad(\text { By Lemma 5) } \\
& =\prod_{i \geq 0}\left(\sum_{b_{i} \in\{0,1, \ldots, p-1\}}\binom{a_{i}}{b_{i}} x^{b_{i} p^{i}}\right) \bmod p
\end{aligned}
$$

(By binomial theorem)

$$
=\sum_{b_{0}, b_{1}, b_{2} \cdots \in\{0,1, \ldots, p-1\}}\left(\prod_{i \geq 0}\binom{a_{i}}{b_{i}}\right) x^{\sum_{i \geq 0} b_{i} p^{i}}
$$

(Terms after applying binomial theorem to each term)

$$
=\sum_{b \geq 0}\left(\prod_{i \geq 0}\binom{a_{i}}{b_{i}}\right) x^{b}
$$

By comparing coefficients of x^{b}, we get the desired identity.
Lemma 7. Let p be a prime and $r \geq 1$ be some positive integer. There exists a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ of degree $p^{r}-1$ such that for $x \in\{0,1\}^{n}$, $f(x)=0 \bmod p$ iff $\sum_{i=1}^{n} x_{i}$ is divisible by p^{r}.

Proof. Let $a=\sum_{i=1}^{n} x_{i}$. Let $a=a_{0}+a_{1} p+\ldots a_{r-1} p^{r-1}+a_{r} p^{r}+\ldots$ be

The map $\sigma: \mathbb{F}_{p^{r}} \rightarrow \mathbb{F}_{p^{r}}$ given by $x \mapsto x^{p}$ is called the Frobenius endomorphism. An endomorphism is a map from an object to itself which preserves its structure. Here $\sigma(x y)=\sigma(x) \sigma(y)$ trivially. Also $\sigma(x+y)=\sigma(x)+\sigma(y)$ because of Lemma 5. Therefore σ respects both addition and multiplication operations of the field. It is an important map in the study of finite fields.
the base p expansion of a.

$$
\begin{aligned}
p^{r} \text { divides } a & \Longleftrightarrow a_{0}=a_{1}=\cdots=a_{r-1}=0 \\
& \Longleftrightarrow a_{i}=\binom{a}{p^{i}} \bmod p \quad \text { (By Lucas's theorem) } \\
& \Longleftrightarrow\binom{a}{p^{i}} \bmod p=0 \text { for all } 0 \leq i \leq r-1 \\
& \Longleftrightarrow 1-\prod_{i=0}^{r-1}\left(1-\binom{a}{p^{i}}^{p-1}\right)=0 \bmod p
\end{aligned}
$$

Now observe that

$$
\binom{a}{b}=\binom{\sum_{i=1}^{n} x_{i}}{b}=\sum_{S \subset[n],|S|=b} \prod_{i \in S} x_{i}
$$

which is a degree b polynomial in x_{1}, \ldots, x_{n}. Therefore

$$
f(x)=1-\prod_{i=0}^{r-1}\left(1-\binom{\sum_{j=1}^{n} x_{j}}{p^{i}}^{p-1}\right)
$$

is the required polynomial of degree $(p-1)\left(p^{r-1}+\cdots+p+1\right)=$ $p^{r}-1$.

Proof of Theorem 2. We have $m=p_{1} p_{2} \ldots p_{t}$. Choose r_{1}, \ldots, r_{t} as small as possible such that $p_{i}^{r_{i}}>n^{1 / t}$ for all $i \in[t]$. By Lemma 7 , there exists polynomials f_{1}, \ldots, f_{t} in variables x_{1}, \ldots, x_{n} of degrees $p_{1}^{r_{1}}-1, \ldots, p_{t}^{r_{t}}-1$ respectively, such that $f_{i}(x)=0 \bmod p_{i}$ iff $p_{i}^{r_{i}}$ divides $\sum_{i} x_{i}$.

Therefore $f_{i}(x)=0 \bmod p_{i} \forall i \in[t]$ iff $\sum_{i} x_{i}$ is divisible by $p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{t}^{r_{t}}>\left(n^{1 / t}\right)^{t}=n$. Since $\sum_{i} x_{i}$ is at most $n, f_{i}(x)=0$ $\bmod p_{i} \forall i \in[t]$ iff $x=(0,0, \ldots, 0)$.

We can combine these polynomials using Chinese Remainder theorem, into one polynomial $f(x)$ such that $f(x)=0 \bmod m$ iff $f_{i}(x)=0 \bmod p_{i} \forall i \in[t]$. The degree of f is at most the maximum degree among f_{1}, \ldots, f_{t}. Therefore $\operatorname{deg}(f)=O\left(n^{1 / t}\right)$.

References

[BBR94] David A Mix Barrington, Richard Beigel, and Steven Rudich. Representing boolean functions as polynomials modulo composite numbers. Computational Complexity, 4(4):367-382, 1994.
[Gro99] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit ramsey graphs. Combinatorica, 20:2000, 1999.
[TB98] Gabor Tardos and DA Mix Barrington. A lower bound on the mod 6 degree of the or function. Computational Complexity, 7(2):99-108, 1998.

