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In the last lecture, we have seen that we can construct matching
vector families from low degree representations of OR mod m. In
this lecture, we will construct construct low degree representations of
OR

Definition 1 (Polynomial representation of OR mod m). A polynomial
p(x1, . . . , xn) represents ORn mod m (over {0, 1} basis) if:

1. p(0, 0, . . . , 0) = 0 mod m and

2. p(x) 6= 0 mod m for all non-zero x ∈ {0, 1}n.

We will now prove that there are (surprisingly) low degree polyno-
mials representing ORn mod m if m has multiple prime factors. Re-
call that when m is a prime power, we need degree at least n/(m− 1).

Theorem 2 ([BBR94]). Let m = p1 p2 · · · pt be a product of t distinct
primes. Then there exists a polynomial representation of ORn mod m of
degree Om(n1/t).

The best known lower bound on the degree of polynomial repre-
sentations of ORn mod m is much weaker.

Theorem 3 ([TB98]). Suppose m has t distinct prime factors. Then the de-
gree of a polynomial representating ORn mod m is at least Ωm((log n)

1
t−1 ).

To prove Theorem 2, we will need some number theoretic prelimi-
naries.

Lemma 4 (Chinese Remainder Theorem (CRT)). Let m = ab where a, b
are coprime. Then the rings Z/mZ ∼= Z/aZ×Z/bZ are isomorphic and
the map x 7→ (x mod a, x mod b) is an isomorphism. Because it is an
isomorphism, given x1 ∈ Z/aZ and x2 ∈ Z/bZ, there exists a unique
x ∈ Z/mZ s.t. x mod a = x1 and x mod b = x2.

By the CRT, we can think of Z/6Z as the product of two rings
Z/2Z ×Z/3Z. For example 5 7→ (1, 2) under the above isomor-
phism. If p is a prime, then every function

f : Zp → Zp can be represented exactly
as a polynomial. But not every function
f : Z6 → Z6 is a polynomial. Try to
construct one such function. Hint: CRT.

Lemma 5. Let p be a prime and n ≥ 1, then (x + y)pn
= xpn

+ ypn

mod p.

Proof. We will prove the base case n = 1. The general case follows
from easy induction. By binomial theorem, (x + y)p = ∑

p
i=0 (

p
i )xiyp−i.
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(p
i ) = p(p−1)...(p−i+1)

i(i−1)...1 is divisible by p for 1 ≤ i ≤ p − 1 since the
denominator doesn’t contain any p multiples. Therefore (x + y)p =

xp + yp mod p.
The map σ : Fpr → Fpr given by x 7→ xp

is called the Frobenius endomorphism.
An endomorphism is a map from an
object to itself which preserves its struc-
ture. Here σ(xy) = σ(x)σ(y) trivially.
Also σ(x + y) = σ(x) + σ(y) because
of Lemma 5. Therefore σ respects both
addition and multiplication operations
of the field. It is an important map in
the study of finite fields.

Lemma 6 (Lucas’s theorem). Let p be a prime and a, b be some non-
negative integers. Suppose a = a0 + a1 p + a2 p2 + . . . and b = b0 +

b1 p + b2 p2 + . . . be the base p representation of a, b (Note that 0 ≤ ai, bi ≤
p− 1). Then, (

a
b

)
≡∏

i≥0

(
ai
bi

)
mod p.

Here (u
v) is defined to be 0 if u < v and (0

0) = 1.

Proof. Let x be some variable. We will write (x + 1)a mod p in two
different ways and compare coefficients to get the desired identity. By
binomial theorem, (x + 1)a mod p = ∑a

b=0((
a
b) mod p)xb. We will

now write (x + 1)a mod p in a different way.

(x + 1)a mod p = (x + 1)∑i ai pi
mod p

= ∏
i≥0

(x + 1)ai pi
mod p

= ∏
i≥0

(xpi
+ 1)ai mod p (By Lemma 5)

= ∏
i≥0

 ∑
bi∈{0,1,...,p−1}

(
ai
bi

)
xbi pi

 mod p

(By binomial theorem)

= ∑
b0,b1,b2···∈{0,1,...,p−1}

(
∏
i≥0

(
ai
bi

))
x∑i≥0 bi pi

(Terms after applying binomial theorem to each term)

= ∑
b≥0

(
∏
i≥0

(
ai
bi

))
xb

By comparing coefficients of xb, we get the desired identity.

Lemma 7. Let p be a prime and r ≥ 1 be some positive integer. There exists
a polynomial f (x1, . . . , xn) of degree pr − 1 such that for x ∈ {0, 1}n,
f (x) = 0 mod p iff ∑n

i=1 xi is divisible by pr.

Proof. Let a = ∑n
i=1 xi. Let a = a0 + a1 p + . . . ar−1 pr−1 + ar pr + . . . be
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the base p expansion of a.

pr divides a ⇐⇒ a0 = a1 = · · · = ar−1 = 0

⇐⇒ ai =

(
a
pi

)
mod p (By Lucas’s theorem)

⇐⇒
(

a
pi

)
mod p = 0 for all 0 ≤ i ≤ r− 1

⇐⇒ 1−
r−1

∏
i=0

(
1−

(
a
pi

)p−1
)

= 0 mod p

Now observe that(
a
b

)
=

(
∑n

i=1 xi
b

)
= ∑

S⊂[n],|S|=b
∏
i∈S

xi

which is a degree b polynomial in x1, . . . , xn. Therefore

f (x) = 1−
r−1

∏
i=0

(
1−

(
∑n

j=1 xj

pi

)p−1)

is the required polynomial of degree (p− 1)(pr−1 + · · ·+ p + 1) =

pr − 1.

Proof of Theorem 2. We have m = p1 p2 . . . pt. Choose r1, . . . , rt as
small as possible such that pri

i > n1/t for all i ∈ [t]. By Lemma 7,
there exists polynomials f1, . . . , ft in variables x1, . . . , xn of degrees
pr1

1 − 1, . . . , prt
t − 1 respectively, such that fi(x) = 0 mod pi iff pri

i
divides ∑i xi.

Therefore fi(x) = 0 mod pi ∀i ∈ [t] iff ∑i xi is divisible by
pr1

1 pr2
2 · · · p

rt
t > (n1/t)t = n. Since ∑i xi is at most n, fi(x) = 0

mod pi ∀i ∈ [t] iff x = (0, 0, . . . , 0).
We can combine these polynomials using Chinese Remainder

theorem, into one polynomial f (x) such that f (x) = 0 mod m iff
fi(x) = 0 mod pi ∀i ∈ [t]. The degree of f is at most the maximum
degree among f1, . . . , ft. Therefore deg( f ) = O(n1/t).
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