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In the last few lectures, we have seen constructions of LDCs
(and LCCs). In the next few lectures, we will look at lower bounds
on the length of LDCs. Let C : {0, 1}k → {0, 1}n be a (q, δ, η)-LDC.
We want to prove lower bounds on the length n as a function of
k, q, δ, η. We are mainly interesting in the regime where q, δ, η are
some fixed constants and k is growing. Firstly, it is not hard to see
that 1-query LDCs (over constant size alphabet) do not exist over
large lengths. Before we prove lower bounds for q ≥ 2, we will prove
some structural results for LDCs.

Smooth codes

Katz and Trevisan [KT00] observed that LDC decoders must have the
property that they select their queries according to distributions that
do not favor any particular coordinate. The intuition for this is that if
they did favor a certain coordinate, then corrupting that coordinate
would cause the decoder to err with too high a probability. If in-
stead, queries are sampled according to a “smooth” distribution, they
will all fall on uncorrupted coordinates with good probability pro-
vided the fraction of corrupted coordinates δ and query complexity q
aren’t too large. Note that, we can always assume that the marginal
distribution of each query is identical. This is because the decoder
can always uniformly permute the queries before making them. The
following definitions allows us to make this intuition precise.

Definition 1 (Smooth distribution). A distribution D over [n] is called
c-smooth if for every i ∈ [n], PrD [i] ≤ c

n .

Definition 2 (Smooth LDC). Let Σ be some finite alphabet. For positive
integers k, n, q and parameters η, c > 0, a map C : {0, 1}k → Σn is a
(q, c, η)-smooth code if, for every i ∈ [k], there exists a randomized decoder
Ai such that

1. For every x ∈ {0, 1}k,

Pr
[
Ai

(
C(x)

)
= xi

]
≥ 1

2
+ η. (1)

2. The decoder Ai (non-adaptively) queries at most q coordinates of C(x).

3. The distribution of each query that Ai makes is c-smooth (as defined in
Definition 1).
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When the parameter η is not explicity mentioned, usually it is as-
sumed to be some fixed absolute constant. A (q, 1, η)-smooth LDC is
called a perfectly smooth LDC. In a perfectly smooth LDC, the marginal
distribution of each query that the decoder makes is uniform over all
the coordinates. The following lemma from [KT00] shows that LDCs Note that all the constructions of

LDCs we have seen so far are perfectly
smooth.

and smooth LDCs are closely related.

Proposition 3 ( [KT00]). If C : {0, 1}k → Σn is a (q, δ, η)-LDC, then C
is also a (q, 1/δ, η)-smooth LDC. Conversely, if C : {0, 1}k → Σn is a
(q, c, η)-smooth code, then C is also a (q, δ, η − qcδ)-LDC.

Proof. Suppose C is a (q, δ, η)-LDC. Let c = 1
δ . Fix some i ∈ [k].Let

Ai be a decoder for xi. Let µ1, . . . , µq be distributions of the q queries
that Ai generates. We will construct a c-smooth decoder Di from
Ai as follows. Without loss of generality, we can assume that the
marginal distributions of j1, . . . , jq are identical by randomly permut-
ing the queries of Ai. We say that j ∈ [n] is “bad” if Prµ[j] > c

n . It
is clear that the number of bad coordinates is at most (1/c)n = δn.
We will first show the probability that a bad coordinate is queried
by Ai is small. Let z ∈ Σn be s.t. z and C(x) agree on good coor-
dinates, but zj = σ for every bad coordinate j ∈ [n] where σ ∈ Σ
is some fixed arbitrary symbol. Clearly ∆(z, C(x)) ≤ δn. Therefore
Pr[Ai(z) = xi] ≥ 1

2 + η.
Di simulates Ai to generate q queries (j1, . . . , jq) ∈ [n]. But Di only

queries the good coordinates among j1, . . . , jq. For every ` ∈ [q] s.t.
j` is a bad coordinate, Di will not query j`, but instead assumes that
the symbol at j is σ. Otherwise, Di makes all the queries and uses Ai

to decode xi. Therefore Di(C(x)) has exactly the same distribution as
Ai(z). Therefore Pr[Di(C(x)) = xi] ≥ 1

2 + η. Morever by construction,
the decoder Di is c-smooth.

We will now prove the converse. Suppose Di is a c-smooth de-
coder and let y ∈ Σn be such that ∆(z, C(x)) ≤ δn. Then

Pr[Di(z) = xi] ≥ Pr[Di(C(x)) = xi]−Pr[Di queries some j ∈ [n] s.t. zj 6= C(x)j].

Since each query of Di follows a c-smooth distribution, the probabil-
ity Di queries a corrupted coordinate is at most q · (c/n) · (δn) ≤ qcδ.
This proves the converse.

We will prove that a smooth LDC needs to have, for each i ∈ [k], a
large matching of q-tuples Mi from which we can decode xi. A q-matching is a q-uniform hyper-

graph with vertex disjoint hyperedges
(which are q-tuples). When q is clear
from context, we will just call them
matchings. The size of a matching is the
number of hyperedges.

Lemma 4. Let C : {0, 1}k → Σn be (q, c, η)-smooth LDC. For every
i ∈ [k], there exists a q-matching Mi of size |Mi| ≥ (η/cq)n s.t. for every
q-tuple S ∈ Mi,

Pr
x∈{0,1}k

[xi = Di(C(x)) | Di queries S] ≥ 1
2
+

η

2
.
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Note that the probability is over a random message x ∈ {0, 1}k.

Proof. Say that a q-tuple S is good (for Di) if

Pr
x∈{0,1}k

[xi = Di(C(x)) | Di queries S] ≥ 1
2
+

η

2
.

Let Hi be the hypergraph of all the good edges. We will show that Hi

contains a large matching Mi of required size.
We will first show that Di will query an edge in Hi with probabil-

ity at least η.

1
2
+ η ≤ Pr [Di(C(x)) = xi]

≤ Pr [Di(C(x)) = xi | Di queries from Hi]Pr [Di queries from Hi]

+ Pr [Di(C(x)) = xi | Di doesn’t query from Hi] (1− Pr[Di queries from Hi])

≤ Pr [Di queries from Hi] + (1/2 + η/2) (1− Pr[Di queries from Hi])

This implies that Pr[Di queries from Hi] ≥ η. Let Mi be maximal
matching in Hi. The vertices in Mi will form a vertex cover for Hi of
size q|Mi|. Because of smoothness a Di, the probability of querying
a coordinate in this vertex cover is atmost (c/n)q|Mi|. Therefore
(c/n)q|Mi| ≥ η, which implies that |Mi| ≥ ηn/(cq).

Katz-Trevisan lower bound: Random restrictions

The first bound we prove is due to Katz and Trevisan [KT00] who
also introduced LDCs in the same paper. The idea is that a small
random subset of codeword coordinates (nε for some ε < 1) should
contain information about most (Ω(k)) of the message bits. By in-
formation theoretic arguments, we can argue that this implies that
n & k1/eps.

Before that we need the following lemma.

Lemma 5. Let M be some fixed q-matching of size |M| ≥ δn over n
vertices. If S is a random subset of [n] where each element is chosen inde-
pendently with probability p = (4δn)−1/q, then the probability S contains a
edge of M is at least 1/4.

Proof. Let t = |M| ≥ δn and let e1, . . . , et be the edges of M (which
will be vertex disjoint). Let Zi be the indicator random variable that
ei ∈ S and let Z = ∑t

i=1 Zi. Then Pr[S hits an edge of M] = Pr[Z 6=
0.]. By Chebychev inequality

Pr[Z = 0] ≤ E[Z2]

E[Z]2
≤

tpq + (t
2)p2q

(tpq)2 ≤ 3/4.
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Theorem 6 ([KT00]). A (q, c, η)-smooth LDC C : {0, 1}k → Σn must
have n ≥q,c,η k1+1/(q−1) log |Σ|.

Proof. Let S be a random subset of [n] where each element of cho-
sen independently with probability p. Let X be uniformly dis-
tributed over {0, 1}k and Y = C(x)|S be the restriction of Y to S.
Let M1, . . . , Mk be the matchings given by Lemma 4. By Lemma 5, for
each Mi, S will contain an edge of Mi with probability at least 1/4.
Therefore I(Xi, Y) & 1. Therefore ∑k

i=1 I(Xi, Y) & k.
We now claim that I(X; Y) ≥ ∑k

i=1 I(Xi; Y). By chain rule of mu-
tual information, I(X; Y) = ∑k

i=1 I(Xi; Y|X<i). Since Xi, X<i are
independent, we have

I(Xi; Y) ≤ I(Xi; Y, X<i) = I(Xi : X<i) + I(Xi; Y|X<i) = I(Xi; Y|X<i).

Therefore I(X; Y) ≥ ∑k
i=1 I(Xi; Y).

We are now done since, I(X; Y) ≤ H(Y) = H(C(x)S) = ∑n
i=0 Pr[|S| =

i]H(C(x)|S | |S| = i) ≤ ∑n
i=1 Pr[|S| = i]i log |Σ| = E[|S|] log |Σ| =

pn log |Σ|. Combining the upper and lower bounds on I(X; Y), we get
k . pn log |Σ| .q,c,η k1+1/(q−1) log |Σ|.

Theorem 6 implies that 2-query LDCs should have n & k2. The
best construction of 2-query LDCs we know is the Hadamard code
which has length n = 2k. What is the truth? In the next class, we will
show that Hadamard codes are actually optimal 2-query LDCs!
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