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In the last lecture, we proved the Katz-Trevisan lower bound
which shows that a (q, δ, η)-LDC C : {0, 1}k → Σn should have

n &q,δ,η (k/ log |Σ|)1+1/(q−1).

We did this by showing that there is a small subset of coordinates
which have information about most of the message coordinates. In
this lecture, we will assume that Σ = {−1, 1} unless otherwise stated.
For 2-query LDCs, this shows that n &q,δ,η,Σ k2. Whereas, the best
construction of 2-query LDCs (which are also 2-query LCCs) we have
seen is the Hadamard code which has n = 2k. We will prove in this
lecture, that Hadamard code is nearly optimal!

Linear 2-query LDCs

We will first show an exponential lower bound for linear 2-query
LDCs. We will need the following edge isoperimetric inequality for
the hypercube.

Lemma 1 (Edge isopermetric inequality for the hypercube). Let G =

(Fn
2 , E) be the hypercube graph where (x, y) ∈ E iff x, y differ in exaclty one

coordinate. Then for every subset S ⊂ Fk
2,

E(S, S) ≤ 1
2
|S| log2 |S|,

where E(S, S) is the number of edges in G with both endpoints in S.

The sets S for which the above inequality is tight are precisely the
subcubes i.e. sets of the form S = {x ∈ Fk

2 : x|A = a} for some subset
A ⊂ [n].

Theorem 2 ([GKST06]). If C : Fk
2 → Fn

2 is a linear 2-query LDC which
can tolerate δn corruptions, then n ≥ exp(Ω(δn)).

Proof. Let C(x) = (
〈
vj, x

〉
)j∈[n] for some v1, v2, . . . , vn ∈ Fk

2. We have
proved in the last class that, for every i ∈ [k], there exists a matching
Mi on [n] of size |Mi| ≥ δn such that for every edge (j, j′) ∈ Mi, we
can decode xi from C(x)j and C(x)j′ . Since C is linear, this implies
that xi = C(x)j + C(x)j′ .
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Non-linear 2-query LDCs

Theorem 3 ([KW04]). Let C : {−1, 1}k → {−1, 1}n be a (2, δ, η)-LDC,
then

n ≥ exp
(

Ω(δη2k)
)

.

The original proof of Kerenedis and de Wolf used quantum infor-
mation theory to prove Theorem 3. We will prove it in a different way
using matrix concentration bounds. It turns out that there are deep
connections between quantum information theory and matrix con-
centration bounds. So it is possible that the two proofs which look
different superficially are indeed the same!

Matrix concentration bounds

Let a1, . . . , ak ∈ R and let x ∈ {−1, 1}k be uniformly random, then

Ex

[∣∣∣∣∣ k

∑
i=1

xiai

∣∣∣∣∣
]
≤

√√√√ k

∑
i=1

a2
i .

We want an analogous inequality for matrices. Let A be an n × n
matrix over the reals. The spectral norm of A denoted by ‖A‖S∞

is
defined as:

‖A‖S∞
= sup

x 6=0

‖Ax‖2
‖x‖`2

= sup
x,y 6=0

yT Ax
‖y‖`2

‖x‖`2

.

The spectral norm is also the largest singular value of the matrix A.
The following proposition is the analogue of this fact for matrices
first proved in [TJ74] (where it was called non-commutative Khint-
chine inequality).

Proposition 4 (Tomczak-Jaegermann). Let A1, · · · , Ak be n× n matrices
over the reals, then

Ex∈{−1,1}k

[∥∥∥∥∥ k

∑
i=1

xi Ai

∥∥∥∥∥
S∞

]
.
√

log n

(
k

∑
i=1
‖Ai‖2

S∞

)1/2

where the expectation is over a uniformly random x ∈ {−1, 1}k.

See [Tro15, Theorem 4.1.1] for the statement above and [Tro15] for
more on such matrix concentration inequalities. From 4, and general
concentration tools like the Lipchitz concetration theorem, one can
show exponential tail bounds for

∥∥∥∑k
i=1 xi Ai

∥∥∥
S∞

.
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Proof of lower bound

We will not worry about the dependence on η, δ. But by being more
careful, one can get the exact bound in Theorem 3 as shown in [Gop18].
In the last lecture, we have shown that we can assume that, on an
average codeword, the decoders sample a random edge of a large
matching and query the vertices of that edge.

Lemma 5. Let C : {−1, 1}k → {−1, 1}n be (2, δ, η)-LDC. For every
i ∈ [k], there exists a matching Mi of size |Mi| &η,δ n s.t. for every edge
(j, k) ∈ Mi,

Ex∈{−1,1}k E(j,k)∈Mi

[
xiDi(C(x)j, C(x)k)

]
≥ η.

We can write any function f : {−1, 1}2 → {−1, 1} as

f (z1, z2) = f̂ (φ) + f̂ ({1})z1 + f̂ ({2})z2 + f̂ ({1, 2})z1z2.

Such a representation is called the Fourier expansion and the coef-
ficients are called the Fourier coefficients. The Fourier coefficients
satisfy f̂ (S) = Ez[ f (z)∏`∈S z`] and therefore | f̂ (S)| ≤ 1. Applying
this to f = Di, we can assume WLOG1 that 1 It can also be true that xi is correlated

with just C(x)j or just with C(x)k . This
would mean that we can decode xi with
just one query. But there are cannot
be many such coordinates, so we can
ignore them.

∣∣∣Ex∈{−1,1}k E(j,k)∈Mi

[
xiC(x)jC(x)k

]∣∣∣ & η.

In other words, we can assume that the decoders just output the
parity of the two bits they have queried or the negation of that. For
simplicity, let us assume that they always output the parity of the
two bits they queried (in {−1, 1} notation, they output the product).
Therefore,

Ex∈{−1,1}k E(j,k)∈Mi

[
xiC(x)jC(x)k

]
& η.

Let A1, A2, . . . , Ak represent the adjacency matrices of the matchings
M1, M2, . . . , Mk respectively. Then we have

C(x)T AiC(x) = ∑
(j,k)∈Mi

C(x)jC(x)k.

Therefore we have Ex∈{−1,1}k C(x)T AiC(x) & η|Mi| ≥ ηδn. Adding
the above inequality for each i ∈ [k], we get

Ex

[
C(x)T

(
k

∑
i=1

xi Ai

)
C(x)

]
& ηδkn.

We can upper bound the LHS of the above inequality as

Ex

[
C(x)T

(
k

∑
i=1

xi Ai

)
C(x)

]
≤ Ex

[∥∥∥∥∥ k

∑
i=1

xi Ai

∥∥∥∥∥
S∞

· ‖C(x)‖2
`2

]

= n ·Ex

[∥∥∥∥∥ n

∑
i=1

xi Ai

∥∥∥∥∥
S∞

]
.
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Since the matrix Ai is equivalent to a diagonal matrix with {0, 1}
entries after permuting rows and columns, it is easy to see that
‖Ai‖S∞

≤ 1. So Lemma 4 implies that

Ex

[∥∥∥∥∥ n

∑
i=1

xi Ai

∥∥∥∥∥
S∞

]
.
√

log(n)
√

k =
√

k log n.

Combining the above inequalities, we get

n
√

k log n & ηδkn⇒ n ≥ exp(Ω(η2δ2k)).

2-query LDCs over large alphabet

We want to understand the optimal length of 2-query LDCs over
growing alphabet size. 2-query LDCs over large alphabet are inti-
mately related to 2-server private information retrieval schemes (we
will see this later in the course). Specifically, we are interested in the
regime where |Σ| = n i.e. the alphabet size is comparable to the
length of the codewords. We have already seen the Katz-Trevisan
bound which says that n & (k/ log |Σ|)2. The exponential lower
bound, we have proved in this class can be extended to the growing
alphabet case, but it quickly degrades with the size of the alphabet. A 2-server private information retrieval

(PIR) scheme allows a user to retrieve
information from two (non-colluding)
servers without revealing any informa-
tion about their query to either server.
Private information Retrieval schemes
were defined in [CGKS98], before LDCs
were even formally defined. In the
paper where they defined LDCs [KT00],
Katz and Trevisan showed that PIR
schemes are closely related to LDCs.

Theorem 6 ([KW04]). Let C : {−1, 1}k → Σn be a (2, δ, η)-LDC, then

n ≥ exp
(

Ω
(

δη2k
|Σ|2

))
.

Open Problem 7. Suppose we have a 2-query LDC C : {−1, 1}k → Σn

where |Σ| = n. Is it true that n = kω(1)?

The best known construction of a 2-query LDC in this regime
(i.e., |Σ| = n) achieves n = exp(ko(1)) [DG16]. Therefore there can
subexponential length LDCs in the large alphabet regime!

Lower bounds for q-query LDCs

We have proved in the last class, the Katz-Trevisan lower bound,
which shows that if C : {−1, 1}k → {−1, 1}n is a q-query LDC, then
n & k1+1/(q−1). This has been improved by Kerenidis and de Wolf by
a reduction to the exponential 2-query lower bound.

Theorem 8 ([KW04]). Let C : {−1, 1}k → {−1, 1}n be a (q, δ, η)-LDC,
then

n &δ,η

(
k

log k

)1+ 1
dq/2e−1

.
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Here we will sketch the main idea in the reduction. For simplic-
ity, let us prove that a 4-query LDC should have n & (k/ log k)2.
The main idea is a reduction. Given a 4-query LDC C : {−1, 1}k →
{−1, 1}n, we will construct a 2-query LDC C′ : {−1, 1}k → {−1, 1}N

where N = n
√

n. Now applying the 2-query exponential lower
bound, we get the required lower bound. The new code is defined
as

C′(x) = C(x)⊗
√

n.

Claim 9. C′ is a 2-query LDC.

Proof. Homework!

An approach to improve lower bounds for q-query LDCs

Here is one way to generalize the matrix concentration approach
to prove lower bounds for q-query LDCs for q ≥ 3. Given a q-
multilinear form Λ, we define its norm as:

‖Λ‖ = sup
{

Λ(z1, · · · , zq) : z1, z2, . . . , zq ∈ {−1, 1}n} . (1)

Let C : {−1, 1}k → {−1, 1}n be a q-query LDC and let M1, M2, . . . , Mk

be the decoding q-matchings. For each matching Mi, we can define a
q-multilinear form Λi as:

Λi(z1, · · · , zq) =
1
n ∑

(j1,··· ,jq)∈Mi

q

∏
i=1

(zi)ji .

So for every x ∈ {−1, 1}k,

Ex∈{−1,1}k [xiΛi(C(x), · · · , C(x))] &ε,δ,q 1.

Summing over i ∈ [k], we have

Ex

[(
k

∑
i=1

xiΛi

)
(C(x), · · · , C(x))

]
&ε,δ,q k.

We can upper bound the LHS as:

Ex

[(
k

∑
i=1

xiΛi

)
(C(x), · · · , C(x))

]
≤ Ex

[∥∥∥∥∥ k

∑
i=1

xiΛi

∥∥∥∥∥
]

.

Therefore we have

Ex

[∥∥∥∥∥ k

∑
i=1

xiΛi

∥∥∥∥∥
]
&ε,δ,q k.

So if we have a statement analogous to Proposition 4, which gives a

good upper bound on Ex

[∥∥∥∑k
i=1 xiΛi

∥∥∥], we get good q-query LDC
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lower bounds. It can be shown that Ex

[∥∥∥∑k
i=1 xiΛi

∥∥∥] ≤ fq(n)
√

k for
some function fq(n). This would prove the upper bound

k ≤ fq(n)2

for q-query LDCs C : {−1, 1}k → {−1, 1}n. It is trivial to show
that fq(n) .

√
n. Proposition 4 implies that f2(n) .

√
log n.

The existence of subexponential 3-query LDCs [Efr09] implies that
f3(n) ≥ (log n)Ω(log log n). Showing that f3(n) ≤ n1/4−α for some
α > 0 implies a super-quadratic lower bound for 3-query LDCs
which is currently not known.

Summary of known results

The following tables show the summary of best known constructions
and lower bounds for q-query LDCs/LCCs C : {0, 1}k → {0, 1}n. δ, η

are assumed to be some fixed constants. Smaller order terms in k like
log k and log log k are also ignored.

q = 2 q = O(1), q ≥ 3

Upper bounds Lower bounds Upper bounds Lower bounds

LDCs
n ≤ 2k n ≥ exp(Ω(k)) n = exp(ko(1)) n & k1+ 1

dq/2e−1

Hadamard Code Matching Vector Codes

LCCs " " n = exp
(

Oq(k1/(q−1))
)

"

Reed-Muller codes

q = (log n)t, t = O(1), t > 1 q = no(1)

Upper bounds Lower bounds Upper bounds Lower bounds

LDCs
n . k1+ 1

t−1 n ≥ Ω(k) n = O(k) n = Ω(k)

Reed-Muller codes (Trivial) Match GV bound [KRR+
19] (Trivial)

LCCs " " " "
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