
Lecture 15: Local codes for distributed storage
Sivakanth Gopi

November 18, 2019

In this lecture, we will discuss local codes designed specifically
for distributed stroage applications, called Local Reconstruction Codes
(LRCs). In distributed storage, data is distributed among several About a billion terabytes of data is

stored in “the cloud". This data is
broken into small parts and stored in
servers each with a capacity of a few
terabytes. And millions of such servers
form a gigantic data center. Adding all
the costs of network, power and cooling
infrastructure, it costs billions of dollars
to build and maintain such a data
center. Without erasure coding, a three
way replication seems unimaginably
wasteful!

servers (each with its own processor and a hard drive with few ter-
abytes capacity). There are two main problems which come up.

1. Hard drives crash. Typically the life of a hard drive is about 3

years. And many of them can crash simultaneously. This leads to
permanent loss of data which is unacceptable.

2. Sometimes a server becomes unresponsive. This can happen when
it is busy serving another request or getting an update or reboot-
ing. This leads to delays in serving user requests which is accept-
able but undesirable

There are three stages in distributed storage on how people dealt
with these problems.

1. In the early stages of distributed storage, people just replicated
all the data 3 times. This is the “golden standard” in terms of
reliability. It can tackle both the above problems quite well. But it
is highly inefficient in terms of storage cost, it increases by 3 times!

2. The next generation used error correcting codes. They encode the
data using (say) Reed-Solomon code (each server has one symbol
of a codeword). For example a (6, 9) Reed-Solomon code1 gives 1 A (6, 9) code has 6 data servers and

3 parity servers computed using a
systematic Reed-Solomon code. Such a
code will allow us recover information
in any 3 servers from the remaining 6

servers.

about as much reliability as 3-way replication. But our storage cost
is only 1.5x. Why can’t we use longer codes and get more reliabil-
ity? A (12, 16) Reed-Solomon code provides similar reliability but
with lower storage cost. The reason is Problem (2) (also Problem
(1) to some extent). To respond to a user request when some server
is not responding, we must access 12 other servers. This becomes
extremely slow.

3. Ideally we want a code which can protect from a large number of
erasures while having a fast local recovery algorithm to recover
from a small number of erasures. And we want to minimize re-
dundancy. Local Reconstruction Codes are precisely such codes
and they form the third generation.

lecture 15: local codes for distributed storage 2

Preliminaries

A linear code (subset) C ⊆ Fn of dimension k can be described in two
ways:

• Generator matrix: C = {Gx : x ∈ Fk} for some n × k matrix G,
called the generator matrix. If the rows of G are v1, v2, . . . , vn ∈ Fn,
then

C(x) = (〈v1, x, , 〉 . . . , 〈vn, x〉).

The columns of G form a basis for C.

• Parity check matrix: C = {y ∈ Fn : Hy = 0} for some (n− k)× n
matrix H, called the parity check matrix. Thw rows of H form a
basis for C⊥.

If C has minimum distance d, we can recover C(x) even after erasing
d − 1 coordinates. If a subset S ⊆ [n] of coordinates of a codeword
C(x) are erased, we can recover C(x) iff the columns of H in S are
linearly independent. This is because Hy = 0 ⇒ H|SyS = −H|S̄yS̄;
so we can find yS given yS̄ iff H|S has full column rank. In particular,
minimum distance of C is d iff every for every subset S ⊂ [n] of size
d− 1, H|S is linearly independent.

Local Reconstruction Codes (LRCs)

We argued that the idea of locality is extremely useful in the context
of coding for distributed storage. For the past few lectures, we have
studied local codes which have local decoding and correction algo-
rithms that tolerate a constant fraction of corruptions. This is quite
powerful, but unfortunately we do not have good constructions of
such codes and we have also proved lower bounds which show that
these codes must have vanishing rates. So these aren’t very useful in
practice. So we will relax our requirements by seperating the normal
and worst cases. “Handle normal and worst cases separately

as a rule, because the requirements for
the two are quite different” - Butler W.
Lampson in ‘Hints for Computer
System Design’

• Normal case: Typically, only one (or a few) server crashes or be-
comes unresponsive at a time. We want to fast data recovery in
this case.

• Worst case: Several servers crash or becomes unresponsive at once.
This in an extremely rare event. We don’t care too much about
speed, we just want that data is protected in this case.

This motivates the definition of LRCs. Throughout this lecture, we
will only talk about linear codes.

lecture 15: local codes for distributed storage 3

Definition 1. An LRC with locality ` is an error correcting code C : Fk
q →

Fn
q which allows recovery of any erased codeword symbol by reading at most

` other codeword symbols.
In some cases, when the bottleneck is
network bandwidth, it also makes sense
to optimize the total communication
cost to reconstruct a crashed server.
Codes designed to minimize the com-
munication cost (instead of number of
servers accessed) are called Regenerating
codes.

More generally, one could ask for local recovery even when some
a ≥ 1 codeword symbols are erased. Most of the theory carries
over to this more general setting. The following proposition is a
generalization of singleton bound for LRCs.

Proposition 2. If C : Fk → Fn is an LRC with locality ` and minimum
distance d, then

n ≥ k +
⌈

k
`

⌉
+ d− 2. (1)

Note that the above bound reduces to the singleton bound when
` = k.

Pyramid codes

Suppose C : Fk
q → Fn

q is a systematic code i.e. the message x is part
of the codeword C(x). If we only want local recovery of message
coordinates, then there is a very simple way to achieve the bound (1).

First encode x ∈ Fk
q using a systematic Reed-Solomon code with

distance d. This will produce d − 1 parity symbols. WLOG, we can
assume that the first parity symbol is ∑k

i=1 xi. We will replace this
symbol with dk/`e parity symbols given by(

t`+`−1

∑
i=t`

xi

)
t=0,1,...,dk/`e−1

.

Thus is our final encoding C : Fk
q → Fn

q where

n = k + dk/`e+ d− 2

which matches the bound (1). If any message symbol is erased, we
can recover it by reading at most ` other symbols. And the minimum
distance of C is d. But parity symbols do not have local recovery.

Tamo-Barg construction

Tamo and Barg [TB14] gave a construciton of an LRC which has local
recovery for every codeword coordinate and meets the bound (1)
over fields of size O(n). We will describe the parity check matrix of
the code. Let r = ` + 1. Let q ≥ n + 1 be a prime power such that To recover a coordinate from ` other

coordinates, all ` + 1 of them should
satisfy a parity check equation. We say
that such a set of coordinates form a
local group of size r = `+ 1. In an LRC,
every coordinate is part of some local
group of size r. It can be shown that
any LRC which matches the bound 1

should have disjoint local groups under
some divisibility conditions.

r divides q − 1. Let γ be a generator for F∗q . Let α = γ(q−1)/r. We
will now make some simplifying assumptions. We will also assume
that r divides n and r divides d − 2. These are not crucial for the

lecture 15: local codes for distributed storage 4

construction, they will make the presentation easier. The code C =

{y : H′y = 0} where

H′ =



1 1 . . . 1 0 · · · 0
0 1 1 . . . 1 · · · 0
...

...
. . .

...
0 0 · · · 1 1 . . . 1
B0 B1 · · · B(n/r)−1


. (2)

B0, B1, . . . , B(n/r)−1 are (d− 2)× r matrices defined as follows. Let

βij = γiαj = γi+j((q−1)/r).

Since 0 ≤ i < (n/r) ≤ ((q− 1)/r), all the βij are distinct. Define

Bi =


βi1 βi2 . . . βir

β2
i1 β2

i2 . . . β2
ir

...
...

...
βd−2

i1 βd−2
i2 . . . βd−2

ir

 .

Claim 3. C has minimum distance d.

Proof. This is equivalent to showing that every d − 1 columns of
H′ are linearly independent. Since row operations doesn’t change
column rank, it is enough to show this for

H′′ =

[
1 1 . . . 1 1 1 . . . 1 · · · 1 1 . . . 1

B0 B1 · · · B(n/r)−1

]
.

But every d− 1 columns of H′′ form a Vandermonde matrix which is
full rank.

Claim 4. If k = dim(C) then

n− k =
n
r
+ (d− 2)− (d− 2)

r
.

Proof. dim(C) = n− rank(H′). Note that H′ has n
r + (d− 2) rows. We

will show that there are d−2
r rows of H′ which are linearly dependent

on other rows. This proves that rank(H′) = n
r + (d− 2)− (d−2)

r . If r
divides t then

βt
ij = γitαjt = γit(γjt/r)q−1 = γit.

So whenever r divides t, for every i, the entries of the tth row of Bi

are constant. Thus whenever r divides t, the tth row of [B0 B1 . . . B(n/r)−1]

is spanned by first (n/r) rows of H′. Therefore (d− 2)/r rows of H′

are linearly dependent on the first (n/r) rows.

lecture 15: local codes for distributed storage 5

Rewriting n− k = n
r + (d− 2)− (d−2)

r , we get n = k + k/r + d− 2
which is the bound (1). In general we will get

n− k =
⌈n

r

⌉
+ (d− 2)−

⌊
(d− 2)

r

⌋
which will be at most 1 off from optimal dimension k possible from
bound (1).

Beyond minimum distance: Maximal recoverability

We have constructed LRCs with the optimal minimum distance (1)
for a given dimension k, length n and locality `. But are they "opti-
mal"? Suppose C, C′ are LRCs with the same parameters n, k, ` and
same minimum distance d. Also assume that they have the same lo-
cal groups. Are they equally good? No! Both of then can correct any
pattern of at most d− 1 erasures. But it is possible that C can recover
from some erasure pattern of more than d− 1 erasures, but C′ cannot.
And similarly C′ can correct some patterns what C cannot. Then how
do we compare different codes?

Luckily, it turns out there is an "optimal" LRC which corrects every
erasure pattern that is correctable by any other LRC with the same
parameters n, k, `, d and the same local groups. Such an LRC is called
a Maximally Recoverable LRC (MR LRC). Thus MR LRCs provide the
strongest possible reliability guarantees given the locality constraints
defining the shape of the parity check matrix. So why do MR LRCs
exist? It is easy to see this from the parity check view.

Let us consider the more general setting where we want locality `

even when there are ’a’ erasures, i.e., we can recover any ’a’ erased
coordinates by reading some ` coordinates. Let r = a + `. Suppose
r divides n. In what follows we refer to subsets {r(i− 1) + 1, . . . , ri}
of the set of code coordinates [n] as local groups. There are g = n/r
local groups and each such group has size r. The parity check matrix
H of a such an LRC has the following form

H =



A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ag

B1 B2 · · · Bg

 . (3)

Here A1, A2, · · · , Ag are a × r matrices over Fq, B1, B2, · · · , Bg are
h × r matrices over Fq. The rest of the matrix is filled with zeros.
Every matrix {Ai}i∈[g] is a parity check matrix of an [r, r − a, a + 1]
MDS code; A1, A2, . . . , Ag are called the local parity check matrices.

lecture 15: local codes for distributed storage 6

This implies that we can recover from any a erasures in a local group
by accessing ` = r − a symbols from the same local group. The
bottom h rows of H, called global parity checks, increase the code co-
dimension from ag to ag + h and increase reliability when there are
more erasures that the local parities cannot handle. The minimum
distance of an LRC is at most a + h + 1 if a + h < r; this is because we
cannot correct a + h + 1 erasures in a local group. But MR LRCs can
correct many patterns way beyond minimum distance.

Proposition 5. There exist MR LRCs over large enough fields.

Proof. Imagine the entries of A1, A2, . . . , Ag and entries of B1, B2, . . . , Bg

as distinct variables; say X represents a vector of all these variables.
Now an erasure pattern S of size ag + h is correctable (by some LRC
as in (3)) iff det(H(X)|S) is a non-zero polynomial in these variables.
If det(H(X)|S) = 0, then no LRC with parity check matrix as in (3)
can correct the erasure pattern S.

We will show that if we assign random values to the variables
from a large enough finite field Fq, then the resulting code will be
maximally recoverable with high probability. If det(H(X)|S) is a
non-zero polynomial, then it will remain non-zero after substituting
random Fq values with probability at least 1− deg(det(H(X)|S))/q =

1− (ag + h)/q. There are atmost (n
ag+h) such sets S. By union bound,

if q � (ag + h)(n
ag+h), then with high probability every erasure

pattern that is correctable (by some code), will be correctable by our
random code as well. So it is maximally recoverable.

So what are the maximal erasure patterns that are correctable?
These are precisely erasure patterns you can obtain by erasing ’a’
coordinates in each local group and ’h’ additional coordinates any-
where. So we can alternatively define MR LRCs as follows.

Definition 6. Let C be an arbitrary (n, r, h, a, q)-LRC with parity check
matrix of the form 3. We say that C is maximally recoverable if for any set
E ⊆ [n], |E| = ga + h, where E is obtained by selecting a coordinates
from each of g local groups and then h more coordinates arbitrarily; E is
correctable by the code C.

We have seen that MR LRCs exists over large enough fields. But in
practice, we require that field size is small. Finite field arithmetic over
large fields makes both encoding and recovery extremely slow. Thus
we want to construct MR LRCs over as small fields as possible. And
fields of characteristic are preferred.

Open Problem 7. What is the smallest field size q required for the exis-
tence of an (n, r, h, a, q)-MR LRC as in (3)? And can we construct them
explicitly over such small fields?

lecture 15: local codes for distributed storage 7

The random construction we have seen requires fields of size
q � nag+h. This is too big. There are also multiple explicit construc-
tions available which do much better than random [GHJY14, GYBS17,
MPK19, GJX19, GGY17]. They bounds they acheive are uncompara-
ble. Some bounds are better in some range of parameters over others.
To simplify presentation, let us assume that a, h are constants and r is
growing slowly with n, like say r = nε for some fixed 0 < ε < 1. The
best construction in this regime is due to [GYBS17] require fields of
size

q . max{O(n/r), O(r)a+h}h.

The best lower bound on the field size is from [GGY17],

q &a,h n · rmin{a,h−2}.

A really interesting open problem is the following.

Open Problem 8. If r, a, h are constant, are there MR LRCs over fields of
linear size, i.e., q .r,a,h n?

Maximal recoverability can be defined in more general context.
Given some linear constraints on the parity check matrix (called a
code topology), we could define maximally recoverable codes with
this topology. See [GHK+

17] for more on different interesting topolo-
gies that are used in practice. This is a new area with several open
questions. For example, we do not even what patterns are correctable
by tensor codes!

References

[GGY17] Sivakanth Gopi, Venkatesan Guruswami, and Sergey
Yekhanin. On maximally recoverable local reconstruction
codes. CoRR, abs/1710.10322, 2017. Available at http:
//arxiv.org/abs/1710.10322.

[GHJY14] Parikshit Gopalan, Cheng Huang, Bob Jenkins, and
Sergey Yekhanin. Explicit maximally recoverable codes
with locality. IEEE Transactions on Information Theory,
60(9):5245–5256, 2014.

[GHK+
17] Parikshit Gopalan, Guangda Hu, Swastik Kopparty,

Shubhangi Saraf, Carol Wang, and Sergey Yekhanin.
Maximally recoverable codes for grid-like topologies. In
28th Annual Symposium on Discrete Algorithms (SODA),
pages 2092–2108, 2017.

http://arxiv.org/abs/1710.10322
http://arxiv.org/abs/1710.10322

lecture 15: local codes for distributed storage 8

[GJX19] Venkatesan Guruswami, Lingfei Jin, and Chaoping Xing.
Constructions of maximally recoverable local reconstruc-
tion codes via function fields. In 46th International Collo-
quium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, pages 68:1–68:14, 2019.

[GYBS17] Ryan Gabrys, Eitan Yaakobi, Mario Blaum, and Paul
Siegel. Construction of partial MDS codes over small
finite fields. In 2017 IEEE International Symposium on
Information Theory (ISIT), pages 1–5, 2017.

[MPK19] Umberto Martínez-Peñas and Frank R Kschischang. Uni-
versal and dynamic locally repairable codes with maxi-
mal recoverability via sum-rank codes. IEEE Transactions
on Information Theory, 2019.

[TB14] Itzhak Tamo and Alexander Barg. A family of optimal
locally recoverable codes. IEEE Transactions on Information
Theory, 60:4661–4676, 2014.

	Preliminaries
	Local Reconstruction Codes (LRCs)
	Beyond minimum distance: Maximal recoverability

