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Last time, we discussed the following estimate for the volume of balls
in the Hamming metric. We defined

hq(ε) = (1− ε) logq

( 1
1− ε

)
+ ε logq

( q− 1
ε

)
.

The quantity hq(ε) is proportional to the maximum entropy of a
random variable taking q values, subject to the constraint that the
random variable must be equal to the first value with probability at
least 1− ε.

When r ≤ n(1− 1/q), we shall prove

qn·hq(r/n)−O(logq n) ≤ vol(r) ≤ qn·hq(r/n). (1)

We used the above estimate to prove the Hamming bound:

R + hq(δ/2) ≤ 1 + O(logq(n)/n).

We begin today be using bounds on the volume to brute force search
for a code.

The Gilbert-Varshamov bound (Greedy Code)

Consider the code of distance d obtained by greedily picking
strings. Pick an arbitrary string x ∈ Σn and let that be the first code-
word. Delete B(x, d) from the ambient set, and find another string
in what remains. If we continue in this way, we will get a code with
|Σ|n/vol(d) codewords, and the distance is d by construction. The lower bound we prove on the

size of the greedy code is called the
Gilbert-Varshamov bound.

So, using (1), the number of codewords will be at least

qn/qhq(d/n) = qn(1−hq(d/n)).

As q gets larger and larger δ + R approaches 1, and this sum can-
not be larger by the Singleton bound. In other words, we have found
a code with rate R = 1− hq(δ), and relative distance δ. To summa-
rize, given a particular constant δ, our bounds show that if we take
the best family of codes with this relative distance must have rate R
(here we take the infimum of all values of R as n→ ∞) satisfying:

1− hq(δ) ≤ R ≤ 1− hq(δ/2).



lecture 2: more limits on codes 2

Random Codes and Random Errors

We have seen two bounds on the rate of a code so far. Instead
of picking the codewords greedily, we could pick them completely
at random. This idea does really well, especially when the errors
themselves are random. Let us analyze what happens.

Suppose we use a random code to transmit messages of length Rn
over the alphabet Σ. Suppose each transmitted symbol is corrupted
to a random value with probability p. What is the probability that the
transmitted message is decoded incorrectly?

An obvious way to do the decoding is to find the codeword that
is closest to the received word in Hamming distance, breaking ties
arbitrarily. If this process decodes the wrong message, then one of
two things must have happened:

• Either the actual number of errors exceeded (p + ε)n,

• Or more than one codeword lies in B(y, (p + ε)n), where y is the
input to the decoder.

By the Chernoff bound, the probability of the first event is at most

exp(−(ε/p)2 pn/3) ≤ exp(−ε2n/(3p)).

The probability of the second event is at most

|C| · vol((p + ε)n)/qn ≤ qn(R+hq(p+ε)−1).

So, if we set p = δ − ε, we obtain a code with rate approaching
1− hq(δ), and yet it tolerates δ− ε fraction of errors with high prob-
ability. This is much better than the guarantee of the greedy code,
which could only guarantee a rate of 1− hq(δ) if the fraction of errors
was less than δ/2. The point is that because the errors are random
and the code is random, even though the distance is d, you can toler-
ate nearly d errors, because the errors are unlikely to be pathological
enough to lead to a mistake when decoding.

Next, we discuss more sophisticated bounds on codes using Eu-
clidean geometry.

Geometry of Codes

Codes correspond to some very interesting geometric objects —
you can map codewords to vectors that are far apart. Suppose we
have a binary code C ⊆ {0, 1}n of distance d. For each codeword
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x ∈ C, let v(x) ∈ Rn be given by v(x)i = (−1)xi . Then the distance of
the code implies that if x, y ∈ C are distinct codewods,

〈v(x), v(y)〉 =
n

∑
i=1

v(x)iv(y)i = (n− ∆(x, y))− ∆(x, y) ≤ n− 2d.

That is an interesting property for a set of vectors to have: if δ ≥ 1/2, Note that since ‖v(x)‖ = ‖v(y)‖ =
√

n,
asserting that 〈v(x), v(y)〉 ≤ n − 2d
is equivalent to saying that ‖v(x) −
v(y)‖2 = 〈v(x)− v(y), v(x)− v(y)〉 ≥
2n− 2(n− 2d) = 4d. If we normalized
these vectors by their length, we get 2Rn

unit vectors whose pairwise distances
are all at least 2

√
δ. Intuitively, you

cannot have too many such vectors in
an n-dimensional space.

all of the angles between the vectors are more than 90 degrees. There
cannot be too many such vectors:

Lemma 1 (Plotkin Bound). Suppose v1, v2, . . . , vm ∈ Rn are non-zero
vectors such that 〈vi, vj〉 ≤ 0 when i 6= j. Then m ≤ 2n.

Proof. We proceed by induction on n. When n = 1, clearly m ≤ 2,
since given any 3 non-zero numbers, at least 2 must have the same
sign. When n > 1, write vi = (αi, wi), where here αi ∈ R is the first
coordinate and wi ∈ Rn−1 denotes the remaining coordinates. We
have

〈vi, vj〉 = αiαj + 〈wi, wj〉.
What is the example showing that
Lemma 1 is tight?First observe that without loss of generality w1 = 0 and α1 > 0.

This is because we can always rotate all of the vectors so that v1 has
this form, and this does not affect the inner products between the
vectors. By assumption, for all i 6= 1, αiα1 = 〈vi, v1〉 ≤ 0, so αi ≤ 0 for
all i > 1.

There can be at most one i > 1 with wi = 0, since if there were 2
such vectors wi, wj, then α1, αi, αj would violate the base case. When
i, j > 1, αiαj ≥ 0, so 〈wi, wj〉 must be non-positive when i, j are
distinct. Thus, we find m − 2 vectors in Rn−1 that have pairwise
non-positive inner products. By induction we get m− 2 ≤ 2(n− 1),
proving that m ≤ 2n.

As a corollary we get:

Theorem 2 (Plotkin Bound). If C is a binary code with relative distance
δ ≥ 1/2, then |C| ≤ 2n.

To give a bound that applies even when δ < 1/2, we need to find
a clever mapping from the codewords to the vector space. Suppose
we have a binary code C ⊆ {0, 1}n as above. Pick a random string
z ∈ {0, 1}n and consider the set C ∩ B(z, w), for a parameter w that
we set later. The expected size of this set is |C| · vol(w)/2n, which is
still quite large if w is chosen to be close to n/2. In effect, we have
found a subset of the code of this size which has the same distance,
yet all the codewords have weight at most w.

For each codeword x in this set, define the vector u(x) where for
each i, we set u(x) = v(x) − α · v(z), for some scalar α that we fix
below. Now, for two distinct codewords x, y of weight w, Recall that we defined v(x) ∈ Rn by

v(x)i = (−1)xi .
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〈u(x), u(y)〉
= 〈v(x)− α · v(z), v(y)− α · v(z)〉
= 〈v(x), v(y)〉 − α〈v(x), v(z)〉 − α〈v(z), v(y)〉+ α2n

≤ n− 2d− 2α(n− 2w) + α2n

= α
(n− 2d

α
+ αn− (n− 2w)

)
It is best to set α =

√
n−2d

n =
√

1− 2δ. Then the above quantity is

= α
(

2
√

n(n− 2d)− (n− 2w)
)

.

If we set w = n/2 −
√

n(n− 2d)/2, the above quantity is non-
positive. To summarize, we have found |C| · vol(w)/2n vectors with In the exercises, you will be asked to

generalize these ideas to the case of
alphabets of size q.

non-positive inner products. Using (1) and Lemma 1 gives that if
d/n ≤ 1/2:

|C| ≤ (2n) · 2n/vol(w) ≤ (2n) · 2n(1−h2(1/2−
√

1−2(d/n)/2))+O(log n).

Stated a different way, we have established that:

Theorem 3 (Elias-Bassalygo bound). Every binary code with δ ≤ 1/2
must satisfy:

R + h2

(1−
√

1− 2δ

2

)
≤ 1 + O(log n)/n.
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