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We have seen several bounds giving tradeoffs between the rate
and relative distance of codes. They are:

Singleton bound R + δ ≤ 1 + O(log(n)/n).

Hamming bound If δ ≤ 1− 1/q, then R + hq(δ/2) ≤ 1 + O(log(n)/n).

Gilbert-Varshamov bound If δ ≤ 1 − 1/q, then there is a code with
R + hq(δ) ≥ 1.

Elias-Bassalygo bound When q = 2 and δ ≤ 1/2, then

R + h2

(1−
√

1− 2δ

2

)
≤ 1 + O(log(n)/n).

Many of these bounds relied on our estimates for the volume of balls
in the Hamming metric. The estimate says that when r/n ≤ 1− 1/q,

qnhq(r/n)+O(log n) ≤ vol(r) ≤ qnhq(r/n).

Today, we start by proving these estimates on the volume.

Entropy

A basic formula of immense consequence to the topic of coding
theory (as well as many other areas) is the definition of Shannon’s
entropy function. Given a random variable A supported on a finite
set, the entropy of A is Here, and everywhere not specified,

logarithm is computed base 2.
H(A) = ∑

a
p(A = a) log(1/p(A = a)).

The entropy is always non-negative, and maximized when A is uni-
form, and then it is log |supp(A)|. Moreover, we have:

H(AB) = H(A) + H(B|A),

where here H(B|A) = Ea←A [H(B|A = a)]. The entropy is subaddi-
tive:

H(AB) ≤ H(A) + H(B).

Subadditivity implies that the conditional entropy can only be
smaller than the entropy:

H(A|B) = H(AB)− H(B) ≤ H(A) + H(B)− H(B) = H(A).
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Let |Σ| = q. We shall give a bound on vol(r) when r/n ≤ 1− 1/q.
When r/n > 1− 1/q, the ball B(x, r) will actually occupy a constant
fraction of the whole space. We shall prove that when r/n ≤ 1− 1/q,
vol(r) ≤ qhq(r/n), where

hq(ε) = (1− ε) logq

( 1
1− ε

)
+ ε logq

( q− 1
ε

)
.

Observe that h2(ε) is just Shannon’s
entropy function.
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Figure 1: h2(ε).
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Figure 2: h5(ε).

Check that limq→∞ hq(ε) = ε.

Now we are ready to bound |vol(r)|. Let X be a uniformly random
element of B(1n, r). The entropy of X is exactly log |vol(r)|. We have
X = (X1, X2, . . . , Xn). Let I be a uniformly random element of [n],
independent of X, and let Y = XI be the Ith coordinate of X. Then
we have

H(X) ≤ H(X1) + · · ·+ H(Xn) by subadditivity

= n · H(Y|I)
≤ n · H(Y).

How large can H(Y) be? If ε = p(Y 6= 1), then we have ε ≤ r/n. Let
Z denote the random variable that indicates whether or not Y = 1.
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Figure 3: h20(ε).
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Figure 4: h10000(ε). Although it looks
like the two curves touch near ε = 1,
there is a gap between them. We always
have hq(1− 1/q) = 1.
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Using the fact that H(Y|Z) is maximized when Y is uniform on the
elements that are not 1, we get

H(Y) = H(YZ) = H(Z) + H(Y|Z)

≤ (1− ε) log
( 1

1− ε

)
+ ε log

(1
ε

)
+ ε log(q− 1)

= (1− ε) log
( 1

1− ε

)
+ ε log

( q− 1
ε

)
.

If we set hq(ε) to be

(1− ε) logq

( 1
1− ε

)
+ ε logq

( q− 1
ε

)
,

then we get that H(Y) ≤ log q · hq(ε). The derivative of hq(ε) with
respect to ε is

logq(e) · (ln(1− ε) + 1 + ln
(1

ε

)
− 1 + ln(q− 1))

= logq(e) · (ln
(1− ε

ε
· (q− 1)

)
).

This quantity is positive when ε < 1 − 1/q, equal to 0 when ε =

1− 1/q, and negative otherwise. So, the maximum is achieved when
ε = r/n.

To prove the other side of the inequality, note that Stirling’s ap-
proximation gives: The bound we are using here is:

√
2π ·

nn+1/2 · e−n ≤ n! ≤ e · nn+1/2 · e−n.

vol(r) ≥
(

n
r

)
· (q− 1)r

=
n!

r!(n− r)!
· (q− 1)r

≥
√

2πn
e4r(n− r)

· qn·hq(r/n)

≥ qn·hq(r/n)−logq(10(r/n)·
√

n).

so the upper bound is very close to the truth.

Finite Fields

We have been talking about the tradeoffs for the parameters of
error correcting codes. An equally important topic is about how to
find efficiently encodable and decodable codes. The way to do this
is to leverage linear algebra. We shall insist that the codes we are
using are linear subspaces of Σn. For this to make sense, we need
to consider vector spaces of finite size. A finite field is a finite set
endowed with the operations of addition, subtraction, mulitplication
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and division. Before we can discuss linear codes, we need to establish
some facts about finite fields. These notes of Keith Conrad are a great

reference: https://kconrad.math.
uconn.edu/blurbs/galoistheory/

finitefields.pdf.

We begin our whirlwind tour of finite fields now. Here, I am going
to gather some very basic facts to show you how finite fields can
be constructed. The notes will move at a very fast pace, and I will
often sketch arguments. If you are motivated, you can try to flesh
out the sketchy arguments into proofs — this is a good way to learn
the material. If you are comfortable taking the existence of finite
fields and their properties on faith, it is reasonable to skip over the
sketches. One of the reasons I was first attracted

to learning about coding theory is that
it is a beautiful example of how deep
math can have extremely practical
and surprising applications. When
finite fields were studied by Galois in
the early 19th century, he could not
possibly have imagined the far reaching
consequences he would have had on
communications and data storage (and
many other fields) much later.

The simplest example of a finite field is the set Fp for a prime p: it
is the set of integers modulo a prime number p. In other words, it is
the set {0, 1, 2, . . . , p− 1} where all operations are carried out modulo
p. It is easy to see how to add, subtract and multiply elements mod-
ulo p. Division is a little more tricky (and the only one that requires p
to be prime).

We start with some basic facts about integers and polynomials
with coefficients coming from any field. Try to prove these facts
using Euclid’s gcd algorithm and the division algorithm:

• If a, b are two positive integers, then you can always express a =

bq + r, where q, r are integers, and r < b.

• If a(X), b(X) are two polynomials, then you can always express
a(X) = b(X)u(X) + r(X), where u(X), r(X) are polynomials and
the degree of r(X) is less than the degree of b(X).

• If a, b are two positive integers, then you can always express the
greatest common divisor d of a, b as d = au + bv, for some integers
u, v.

• If a(X), b(X) are two polynomials, you can always express the
common divisior d(X) of a(X), b(X) of largest degree as d(X) =

a(X)u(X) + b(X)v(X), for some polynomials u(X), v(X).

Now, suppose a is an integer and p is a prime. Then, the above
facts imply that either a = 0 mod p, or 1 = au + pv for some integers
u, v. In the second case, we have au = 1 mod p, so u is the inverse of
a in the finite field. This shows that every non-zero element a ∈ Fp

has a multiplicative inverse a−1.
Similarly, suppose f (X) ∈ F[X] is a polynomial of degree k

with coefficients coming from some field F. Suppose further that
f (X) is irreducible — it cannot be factored into two polynomials of
smaller degree. Then the gcd algorithm establishes that every poly-
nomial a(X) is either divisible by f (X), or we have 1 = a(X)u(X) +

f (X)v(X), so a(X)u(X) = 1 mod f (X). Thus, u(x) is the inverse of

https://kconrad.math.uconn.edu/blurbs/galoistheory/finitefields.pdf
https://kconrad.math.uconn.edu/blurbs/galoistheory/finitefields.pdf
https://kconrad.math.uconn.edu/blurbs/galoistheory/finitefields.pdf
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a(x) modulo f (X), and the set of polynomials modulo f (X) is itself a
field! If F = Fp, then we obtain a finite field of size pk — there are pk

possible remainder polynomials when you divide by f (X).
In fact, the above two constructions capture all possible finite fields.

Upto renaming the elements, there is a unique finite field of size pk,
for every prime power pk. The fact that finite fields are unique

is, as far as I know, a fact that requires
significant machinery from Galois
theory. It is however, easier to see that
there is only one finite field of size p for
prime p.

Many of the definitions you may have learnt in linear algebra carry
over to finite fields. For example, vectors are linearly independent
or not, and every subspace has a dimension, with a basis of vectors
etc etc. One thing to be careful about is that the idea of orthogonality
does not have the same meaning over finite fields. For example, there
are many vectors x ∈ Fn

2 such that 〈x, x〉 = ∑n
i=1 x2

i = 0, something
that does not happen over the reals. That said, it does make sense to
define the orthogonal complement of a subspace V ⊆ Fn as V⊥ =

{x ∈ Fn : ∀y ∈ V, 〈x, y〉 = 0}. You can prove:

Fact 1. The dimension of V plus the dimension of V⊥ is always exactly n.

If you take a non-zero element γ ∈ F in a finite field and start
powering it γ, γ2, γ3, . . . , you must eventually get to γh = 1. By
considering the map that takes every non-zero element of the field
α to γα, we see that this map must partition the non-zero elements
into disjoint sets S1, S2, . . . , Sr, where γ · Si = Si for all i, and |Si| = h
for all i. This proves that h must divide |F| − 1. The above discussion
implies that:

Fact 2. If F is a field of size q, then the polynomial Xq − X evaluates to 0
on every element of the field.

Another useful fact:

Fact 3. If f (X) ∈ F[X] is a polynomial and f (α) = 0, then X − α divides
f (X).

Proof. We can always write f (X) = (X − α)u(X) + r(X), where r(X)

is a polynomial of degree 0, namely a constant. But since f (α) = 0,
we see that r(α) = 0, so r = 0.

As a consequence, we get

Fact 4. If f (X) ∈ F[X] is a non-zero polynomial of degree d, then it has at
most d roots.

Proof. If α1, . . . , αd+1 are distinct roots of f , then f (X) must be divisi-
ble by (X − α1)(X − α2) . . . (X − αd+1). So, the degree of f must be at
least d + 1, a contradiction.

Note that it is not necessary that f has
even a single root in F. However, you
can show that there is always a larger
field containing F where f has d roots
(possibly counted with multiplicity).

Fact 5. If F is a field of size q, then Xq − X = ∏α∈F(X− α).
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Finally, an non-trivial fact that is extremely useful:

Fact 6. Given any finite field of size q, there is an element γ such that
γ, γ2, . . . , γq−1 = 1 are all the non-zero elements of the field.
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