
Lecture 4: Reed-Solomon Codes
Anup Rao

October 6, 2019

Now, we turn to the task of constructing efficient codes. A linear
code is a code that is a subspace of a vector space over a finite field.
Namely, we have C ⊆ Fn, where F is a finite field, and for all x, y ∈
C, α, β ∈ F, αx + αy ∈ C.

Once we have restricted our attention to linear subspaces we get:

Fact 1. A subspace C ⊆ Fn is a linear code of distance d if and only if every
non-zero element of C has d non-zero coordinates. The number of non-zero coordinates is

often called the weight of the vector.
Proof. Since C is a subspace, it contains the vector 0 ∈ Fn. If the
distance is C, then in particular, for all x ∈ C, ∆(x, 0) ≥ d, so x
must have at least d non-zero coordinates. Conversely, if every non-
zero element of C has d non-zero coordinates, then if x, y ∈ C are
distinct codewords, we have x − y ∈ C is also a codeword, and it is
non-zero, so it must have d non-zero coordinates. This proves that
∆(x, y) ≥ d.

Given a linear subspace C, described
using its generator matrix, it is NP-hard
to compute distance of the code.

Since C is a subspace, you can express every element as a linear
combination of k vectors, the basis for the subspace. So, the encoding
function can be viewed as a linear map. Formally, a linear code C can
be specified by an n× k matrix over the finite field, G ∈ Fn×k, called
the generator matrix. A message x ∈ Fk is interpreted as a column
vector, and encoded as Gx ∈ C. The columns of G are just a basis for
the linear subspace C.

Having access to the generator matrix is a huge advantage! It
means that encoding a message is as simple as multiplying a vector
by a matrix. Assuming that multiplication in the field takes unit time,
computing Gx takes at most O(n2) time. Indeed, for many codes, the
encoding can be done in almost linear time, as we shall discuss soon. It can be shown that random linear

codes have good distance with high
probability.

Decoding from Erasures

What about decoding? There is no known generic decoding algo-
rithm that works for every linear code (this is an NP-hard problem).
However, there is a simple algorithm to recover from erasures.

Suppose d − 1 symbols of Gx are erased. This corresponds to
retaining G′x = y for some matrix G′ that corresponds to at least
n− d + 1 rows of G. Since the code has distance d, this matrix must



lecture 4: reed-solomon codes 2

be full rank, and so it is enough to find the unique value of x such
that G′x = y. This can be done by Gaussian elimination in time
O(n3).

Reed-Solomon Codes

Reed-Solomon codes are the most beautiful of all codes. Given a
finite field F of size q, the messages are viewed as univariate polyno-
mials of degree k − 1. There are exactly qk such polynomials. Given
such a polynomial f (X), the codeword that corresponds to it is just
the vector in Fq that corresponds to the q evaluations of f on all the
elements of F.

This a linear code — taking linear combinations of two polynomi-
als of degree k− 1 gives you another polynomial of degree k− 1. The
distance of the code is d = q− k + 1 — any non-zero polynomial of
degree k− 1 can have at most k− 1 roots, and there are polynomials
of degree k− 1 that have k− 1 roots. Observe that this means that the
code matches the Singleton bound: d + k = q + 1. It is not possible to
have a better code with alphabet size q and codeword length q.

Besides this efficiency, the algebraic structure of the code means
that both encoding and decoding can be done extremely efficiently.
Because the non-zero elements of the finite field can be written as
γ, γ2, . . . , γq−1, the generator matrix of the code has a particularly
nice structure. It is

G =


1 0 0 . . . 0
1 γ γ2 . . . γk−1

1 γ2 γ4 . . . γ2(k−1)

...
...

...
. . .

...
1 γq−1 γ2(q−1) . . . γ(k−1)(q−1)

 .

The columns of the generator matrix corresponds to the monomials
1, X, X2, . . . , Xk−1. Observe that if

f (X) = f0 + f1X + . . . + fk−1Xk−1,

then

G ·


f0

f1
...

fk−1

 =


f (0)
f (γ)

...
f (γq−1)

 .

This structure of G allows for extremely fast encoding — there is an Try to prove that the orthgonal comple-
ment of the Reed-Solomon code is also
a Reed-Solomon code.

algorithm to compute G · f in time O(q log k) time. The nice thing

This is the fast-fourier-transform
algorithm



lecture 4: reed-solomon codes 3

is that we also have fast algorithms to decode Reed-Solomon codes
from errors.

To decode the codeword from erasures is particularly easy. As
long as k symbols of the codeword survive, one can reconstruct the
polynomial by interpolation. Namely if f (X) is a degree k− 1 poly-
nomial, and f (α1) = β1, f (α2) = β2, . . . , f (αk) = βk for k distinct
elements α1, . . . , αk, then

f (X) =
k

∑
i=1

βi ·
∏j 6=i X− αj

∏j 6=i αi − αj
.

The polynomial given above is of degree k and satisfies the given
constraints. There cannot be two polynomials that satisfy the con-
straints, or this would contradict the distance of the code.

Decoding from errors is a little more tricky. Suppose the orig-
inal message corresponds to the degree k − 1 polynomial f (X).
Suppose α1, . . . , αq are the elements of the field, and the received
word is (β1, . . . , βq). If there is no error in the ith coordinate, we have
f (αi) = βi. The decoding algorithm we present

here is a simplification of an algo-
rithm by Welch and Berlekamp. The
simplification is due to Gemmell and
Sudan.

A key idea to handle the decoding is the concept of an error-locator
polynomial, which is useful to design the decoding algorithm. This is
a polynomial e(X) whose roots correspond to the inputs αi where the
received word has an error — e(αi) = 0 whenever βi 6= f (αi). We do
not know how to compute e(X) directly, since we do not know where
the errors are. Nevertheless, consider the polynomial

e(X)(Y− f (X)) = e(X) ·Y− e(X) · f (X).

This is a low degree polynomial that vanishes on all inputs (αi, βi),
whether there is an error in the ith coordinate or not. We shall try
to reconstruct this bivariate polynomial, and then use it to compute
f (X).

Suppose the number of errors r is less than (q − k + 1)/2. Let
h(X, Y) be a non-zero bivariate polynomial of the form

h(X, Y) = e(X) ·Y− g(X),

with e(X) of degree at most r and g(X) of degree at most r + k − 1,
such that h(αi, βi) = 0 for all i. Such a polynomial can be efficiently



lecture 4: reed-solomon codes 4

computed. We are trying to find a solution to the linear system:


β1 α1 · β1 . . . αr

1 · β1 1 α1 . . . αr+k−1
1

β2 α2 · β2 . . . αr
2 · β2 1 α2 . . . αr+k−1

2
...

...
. . .

...
...

...
. . .

...
βq αq · βq . . . αr

q · βq 1 αq . . . αr+k−1
q

 ·



e0

e1
...
er

g0

g1
...

gr+k−1


= 0,

where here

h(X, Y) = (e0 + . . . + er · X) ·Y + g0 + . . . + gr+k−1 · Xr+k−1.

This is a homogenous linear system that has at least one non-zero
solution: we could set e(X) to be the correct error-locator polynomial
and h(X, Y) = e(X)Y − e(X) f (X) to give a non-zero solution to
the above system. So, you can find the coefficients of a non-zero
solution for h using Gaussian elimination. Given h(X, Y), we can Here we are using the fact that the set

of solutions to Mx = 0 is always a
subspace, and Gaussian elimination can
be used to find a basis for this space.
Actually, it is possible to compute
the solution in near linear time using
polynomial interpolation.

compute e(X) and g(X). Note that there is no reason to believe that
e(X) actually is the error-locator polynomial. Nevertheless, we prove
that g(X)/e(X) = f (X):

Claim 2. If h(X) is computed as above, we must have f (X) · e(X) = g(X).

Proof. Consider the polynomial u(X) = f (X) · e(X)− g(X). When-
ever αi is such that the codeword does not have an error in location i,
we have

u(αi) = e(αi) f (αi)− g(αi)

= e(αi)βi − g(αi)

= h(αi, βi)

= 0.

So, u(X) is a polynomial of degree r + k− 1 that has q− r roots. Since
q− r > r + k− 1, u(X) = 0.

Is it possible that the e(X) found by the
algorithm is not the correct error-locator
polynomial?

To review the whole decoding algorithm: first compute h(X, Y)
that vanishes on (αi, βi) for all i, and then compute f (X) = g(X)/e(X).
This gives a fast algorithm for decoding from up to (q− k + 1)/2 er-
rors, and it is impossible to uniquely recover the message from more
errors.



lecture 4: reed-solomon codes 5

Code concatenation

The main drawback of the Reed-Solomon code is that it uses a
large alphabet. What if we really want a code that uses the binary That said, in many applications, like

CD-ROM’s, errors are localized in
space. For that situation the large al-
phabet does not hurt so much, because
when part of an alphabet symbol is
corrupted, it is quite likely that most of
the alphabet symbol will be corrupted
anyway.

alphabet?
The most naive solution is to simply encode the alphabet symbols

in binary. When q = 2r, recall that Fq consists of polynomials of
degree r − 1 with coefficients from F2. So, just write down each
element using bits that represent its coefficients. This gives a linear
code C ⊆ {0, 1}q log q of dimension k and distance q− k + 1. The nice
thing is that linearity is preserved by this encoding. However, the rate
and relative distance of the code drop by a factor of log q.

A more sophisticated idea is to use another code to encode each
alphabet symbol. This idea works, but in the interest of time we leave
it to the exercises to explore the details.


	Decoding from Erasures
	Reed-Solomon Codes
	Code concatenation

