
Lecture 5: Expander Codes
Anup Rao

October 9, 2019

The main drawback of Reed-Solomon codes is the large alphabet
size. Expander codes are codes that do not have this drawback. The
properties of expander codes follow from the combinatorial proper-
ties of graphs called expander graphs.

An expander graph is a sparse graph with the property that every
(small enough set) S expands — namely the neighborhood of S in
the graph is larger than S itself. For the purpose of building an error- Expander graph have been the subject

of extensive study in mathematics and
computer science in the last 50 years.
They have many many applications,
this is just one.

correcting code, it is best to start with a bipartite expander graph.
Recall that a graph is bipartite if the vertices can be partitioned into
sets U, V such that all edges go between U and V.

Definition 1. A bipartite graph with bipartition U, V is called an (α, β)

expander, if for every set S ⊆ U of size at most α · |U|, the number of
vertices in V that are connected to S is at least β · |S|.

Let G be a bipartite graph as above, with |U| = n, |V| = m, such
that every vertex in U has exactly D > 2 neighbors, and the graph is
a (α, β) expander, with β > 3D/4. These parameters ensure a strong
property: not only does every set contained in U expand, but it will
have many unique neighbors. Given S ⊆ U, say that v ∈ V is a unique
neighbor of S if v exactly 1 neighbor in S.

Lemma 2. If G is as above, then every S ⊆ U of size |S| ≤ αn has more
than (D/2) · |S| unique neighbors.

Proof. Suppose S has u unique neighbors. Then by counting the
number of edges emanating from S, we get

D · |S| ≥ u + (β|S| − u) · 2,

which gives u ≥ 2β− D > D/2, upon rearranging.

We shall use this graph to construct an error correcting code. The Later, we shall prove that such ex-
pander graphs exist.code is extremely simple to describe: let H be the m × n matrix de-

fined by

Hi,j =

1 if (j, i) is an edge of G,

0 otherwise.
.

Then the code code C is given by

C = {x ∈ Fn
2 : Hx = 0}.

lecture 5: expander codes 2

These codes are also called low-density parity check codes, because the
parity check code H is a sparse matrix. Since we have added m linear
constraints, the dimension of the code is at least n−m.

Let us start by analyzing the distance of the code:

Lemma 3. The distance of C is at least αn.

Proof. Since the code is linear, it suffices to show that every codeword
has at least αn ones. Indeed, suppose this is not the case, and x ∈ C,
but x has less than αn ones. Let S ⊆ U be the set of vertices in the
graph that correspond to the 1’s of x. Since S has more than D/2
unique neighbors, we see that at least D/2 of the parity checks are
non-zero.

So, we have a bona fide code. The truly amazing thing is that
the decoding algorithm for the code is extremely simple as well. To
decod a given a received word y to a codeword repeat the following
steps until there is nothing left to do — if there is a vertex on the left
such that the majority of its neighbors have non-zero parity check,
flip the value of the vertex. That is the whole algorithm! In fact, you can prove that you can do

the flipping in parallel, giving an even
faster decoding algorithm.Lemma 4. The above decoding algorithm recovers any codeword from up to

αn/2 errors.

Proof. First observe that throughout the algorithm, the number of
erroneous parity checks never increases. This already implies that
when the algorithm stops, it must terminate with the correct code-
word. Indeed, we start at distance at most αn/2 errors, which means
that the number of unsatisfied parity checks is at most αDn/2. If at
some point, we are working with a word at distance αn from the cor-
rect codeword, then Lemma 2 implies that the number of incorrect
parity checks is greater than (D/2)αn. This is impossible, since the
number of incorrect parity checks cannot increase.

The only remaining thing to check is that there will always be a
vertex in U that the algorithm can pick in each step. This again fol-
lows from Lemma 2. At each point, if the coordinates with errors is
denoted S, then S has at most D|S| neighbors, but more than half of
them are unique neighbors. So, so some vertex of S must see more
than D/2 unique neighbors. This vertex is a candidate for the algo-
rithm to flip.

It only remains to prove that expanders with the above properties
can be constructed. This is a major project, involving many beau-
tiful ideas that we do not discuss here. We restrict our attention to
showing that such expanders exist.

lecture 5: expander codes 3

For a parameters D, α, let m = 8e2Dαn. Pick a uniformly random
graph by connecting each of the n vertices in U to D vertices in V.
Let us compute the probability that the graph is not an expander.
Whenever the graph does not expand, there must be a set S ⊆ U
of size k ≤ αn such that the kD edges coming out of S had lots of
collisions. Specifically, if we imagine choosing these kD edges one by
one, D/4 of them must have landed among the previously chosen
ones.

The probability of this event is at most(
n
k

)
·
(

kD
kD/4

)
·
(kD

m

)kD/4

≤
(en

k

)k
·
(4ekD

kD

)kD
·
(kD

m

)kD/4
using

(
n
k

)
≤ en

k

=
(en/k
(m/(4ekD))D/4

)k

=
(en/k
(2αen/k)D/4

)k

If we choose D = O(log(1/α)), the above quantity is at most 1/4k.
This means that the probability that the graph is not an expander is
at most ∑∞

k=1 1/4k = 1/2.
The result is a code that recover from an error rate of α/2, and

has rate 1 −O(α log(1/α)). For small α, this expression looks like
1−O(h2(α)). Recall that the Hamming bound says we cannot beat
rate 1− h2(α).

Expanders from Eigenvalues

The expander codes we saw in the last section required very
strong expanders, whose expansion is almost D. These are quite
hard to construct. However, it turns out that one can improve the
construction so that even weak expansion suffices.

In order to carry out the analysis in this section, we need a spectral
definition of expanders. The crash course in spectral expanders starts
now.

Every real valued matrix A can be written as

A = UᵀSV,

where U, V are unitary matrices, and S is a diagonal matrix. This Recall that an N × N unitary matrix
is a matrix that encodes a rotation. In
other words, its columns and rows both
form orthonormal bases. In other words
VVᵀ = VᵀV = I.

is called the singular value decomposition of A, and the entries on the
diagonal of S are the singular values of A.

So, to compute Ax, first rotate x with
Vx, then scale the coordinates using S,
then rotate again using Uᵀ.

When A is symmetric, for example if it is the adjacency matrix of

lecture 5: expander codes 4

an undirected graph, then we have

A = VᵀEV,

where V is unitary, and E is diagonal. The entries of E are now the
eigenvalues of A, and the rows of V are the eigenvectors.

Given a D-regular graph on N vertices, with adjacency matrix A, it
is easy to see that the eigenvalues of A all lie in between D and −D,
and there is an eigenvalue of D that corresponds to the eigenvector
(1/
√

N, . . . , 1/
√

N).
We say that the graph is an expander if the second largest magni-

tude eigenvalue (namely the second entry in the list of eigenvalues
sorted by absolute value) is bounded away from D. A key fact is the
following lemma:

Lemma 5 (Expander mixing). Suppose G is a D-regular graph with
N × N adjacency matrix A with second largest magnitude eigenvalue λ.
Suppose S, T are subset of vertices. If e denotes the number of edges between
S and T, where we count edges in S ∩ T twice, then∣∣∣e− D · |S| · |T|

N

∣∣∣ ≤ λ
√
|S| · |T|.

Note that D|S||T|/N is the number
of edges that you would expect to lie
between S, T in a random D-regular
graph. So, the lemma asserts that the
graph behaves like a random graph.

Can you use the expander mixing
lemma to prove that every set of linear
density must expand in the sense of the
previous section?

Similarly, we have:

Lemma 6 (Bipartite Expander mixing). Suppose G is a D-regular bipar-
tite graph with N vertices on the left and right, N × N symmetric adjacency
matrix A, and with second largest magnitude eigenvalue λ. Suppose S, T
are subset of vertices. If e denotes the number of edges between S and T,
then ∣∣∣e− D · |S| · |T|

N

∣∣∣ ≤ λ
√
|S| · |T|.

Proof. Let 1S, 1T be the indicator vectors for the sets S, T. Suppose

A =

[
1N/
√

N
W

]ᵀ
·


D
±λ

. . .

 ·
[

1N/
√

N
W

]

is the eigenvalue decomposition. Then we have e = 1ᵀS · A · 1T , so

e− D · |S|√
N
· |T|√

N
= 1ᵀS ·W

ᵀ ·

±λ
. . .

 ·W · 1T .

In other words 1ᵀS A1T corresponds to projecting 1S, 1T onto the basis
of eigenvectors, multiplying these vectors coordinate-wise in this
basis, and taking a weighted average of the resulting vector using the
eigvenvalues. In the above expression, we took out the contribution

lecture 5: expander codes 5

of the top eigenvalue. All other terms are scaled by an eigenvalue of
magnitude at most λ.

Since all entries on the diagonal are at most λ in magnitude we
get: ∣∣∣e− D · |S| · |T|

N

∣∣∣ ≤ λ · 1ᵀS ·W
ᵀ ·W · 1T

≤ λ
√
|S| · |T|,

where the second inquality follows from Cauchy-Schwartz.

To see why the expander mixing lemma implies expansion, sup-
pose S a set of at most αN vertices on the left, and let T be the set of
neighbors of S. By construction, |T| ≤ αDN. Then the number of
edges between S, T is D · |S|. So, the expander mixing lemma asserts
that

D · |S| − D · |S| · |T|
N

≤ λ
√
|S| · |T|

⇒D(1− |T|
N

) ≤ λ

√
|T|
|S|

⇒D(1− αD) ≤ λ

√
|T|
|S| .

Set α so that 1− αD ≥ 1/2. Then we get |T|/|S| ≥ (D/(2λ))2.

	Expanders from Eigenvalues

