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Today, we explore two disjoint topics. The first is List-Decoding

List Decoding

In many applications it is enough to narrow down the trans-
mitted codeword to a small list of candidates. This is called List-
Decoding. The advantage of doing this is that we can hope to tolerate
a much higher fraction of errors.

Indeed, one can show the following bound, that we do not prove
here:

Theorem 1 (Johnson Bound). If C ⊆ Σn is a code of distance d, then any
Hamming ball of radius n−

√
n(n− d) contains at most n|Σ| codewords.

In particular, this implies that the Reed-Solomon code of dimen-
sion k can be list decoded (with a list of size n2) even if the number
of errors is as large as n−

√
n(k + 1). Note that this number of errors

far exceeds the distance of the code, which is n− k + 1.
Here we give an algorithm due to Sudan for this problem. Sup-

pose we are working with a finite field F of size q, and we receive a
string β1, . . . , βq, that is supposed to be the evaluations of f ∈ F[X] of
degree k− 1 on the points α1, . . . , αq, after some errors.

The idea of the algorithm is try and reconstruct the polynomial
Q(X, Y) = (Y − f1(X))(Y − f2(X)) . . . , where here f1, f2 are all the
polynomials of degree k− 1 that have high agreement with the given
received word.

Consider the space of all polynomials Q(X, Y) whose degree in X
is at most d

√
nke, and degree in Y is at most d

√
n/ke. The number

of monomials in such a polynomial is more than n, so there must be
at least one such polynomial that is non-zero and yet vanishes on all
inputs Q(αi, βi) = 0. So, we can use Gaussian elimination to find a
non-zero polynomial Q as above. Here we discuss how to list-decode

from n− 2
√

nk errors. In the exercises,
we shall explore how to decode from
n −
√

nk errors by modifying this
algorithm.

Lemma 2. If f (X) is a degree k − 1 polynomial that agrees with the re-
ceived word in at least 2

√
nk + k + 1 locations, then Y − f (X) must divide

Q(X, Y).

Proof. Consider the polynomial Q(X, f (X)). This is a polynomial of
degree at most d

√
n/ke · (k− 1) + d

√
nke ≤ 2

√
nk + k, yet it vanishes

on 2
√

nk + k + 1 inputs. So, it must be identically 0.
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Now, view the polynomial Q(X, Y) as univariate polynomial over
Y, with coefficeints from the finite field F/(g(X)), where g is an
irreducible polynomial of degree k. Since f (X) is a root of Q, (Y −
f (X)) must divide Q(X, Y).

To complete the list decoding algorithm, factor Q. The number of
factors of the form Y− f (X) is at most

√
n/k, since the degree of Y is

at most
√

n/k. It is not trivial to factor polynomials,
but there are efficient algorithms that
can do it. We do not discuss them here.

Tree Codes

A tree code is a combinatorial object that has even stronger proper-
ties than codes. They were invented by Schulman. Formally, a binary
tree code is a labeling of the edges of the infinite binary tree with
symbols from some alphabet Σ. Given two nodes u, v in the tree, let
l(u, v) denote the least common ancestor of u, v. Given two nodes
a, b in the tree where a is an ancestor of b, let c(a, b) ∈ Σ∗ denote
the string labeling the path from a to b. The tree code has relative
distance δ if whenever you take two nodes u, v that are at the same
depth of the tree, ∆(c(l(u, v), u), c(l(u, v), v)) ≥ δ · |c(l(u, v), u)|. One
way to think about this is that the path from the root of the tree to u,
and the path from the root to v can have a large common part. How-
ever, on all the parts of the paths that are not common, the symbols
labeling the edges must have large distance.

We first observe that tree codes contain error-correcting codes in
them. Indeed, to encode an n-bit message x, consider the labels in the
tree that correspond to the string x0n. Now, if x 6= y are two distinct
n-bit strings, then labels of x0n and y0n are guaranteed to disagree
in δn coordinates by the definition of the tree code. So, the tree code
defines an encoding into an error correcting code. Actually, the tree
code provides something much stronger. The above encoding can be
done online. To compute the first symbol of the encoding, you only
need to know the first bit of the message, and so on. This means you
can start transmitting the codeword even before you see the whole
message.

Schulman used tree codes to correct errors in communication
protocols. Intuitively, if Alice and Bob are having an interactive con-
versation, they should use tree codes to encode all of their messages.
The advantage is that after a long time has passed Bob will be certain
of what Alice said in the distant past. This is because if Bob decodes
that Alice’s messages correspond to u instead of v, then the only
way this can happen is if the number of errors in the interval corre-
sponding to the path l(u, v), v exceeded δ/2. So, l(u, v) is probably
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quite close to u, and the early part of the transmissions were likely
decoded correctly.

Tree codes exist

Here is a simple random construction that gives a tree code. Let Can we hope that a uniformly random
labeling will give a tree code with high
probability?

F be a finite field, and let P ∈ F[[X]] be a uniformly random power
series over F. This is simply an infinite list of coefficients P0, P1, . . . .
Every vertex/edge at depth n in the infinite binary tree corresponds
to some binary string u ∈ {0, 1}n, which we interpret as a polynomial
u(X) ∈ F[X] of degree n− 1, whose coefficients are either 0 or 1. The
first step in the tree corresponds to u0, and the next corresponds to
u1. The label of the edge is defined to be the degree n− 1 coefficient
of P(X) · u(X).

To see that this gives a tree code, consider two arbitrary n-bit
strings u, v. Suppose u, v have a common prefix up to the mth bit.
Then u(X) − v(X) is divisible by Xm−1. So, it is enough to prove
that for every polynomial f (X) of degree n − 1 with coefficients in
{1, 0,−1}, and f0 = 1, the first n coefficents of f (X) · P(X) have at
least δn non-zeros. Fix f (X). For a random power series P(X), the n
coefficients are all uniformly random and independent of each other.
So, the expected number of 0’s is n/q, and the probability of seeing
(1− δ)n elements that are 0 is at most 2h(δ)n · q−δn. There are only 3n

choices for the polynomial f , so by the union bound, the probability
of not having this property is at most 2h(δ)n · q−δn · 3n. Finally, we
conclude that the probability we do not get a tree code of distance δ

is at most ∑∞
n=1 2h(δ)n · q−δn · 3n, which is less than 1/100 for q large

enough.
We do not know of any explicitly encodable or decodable tree

codes.
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