
Lecture 8: Local Codes
Sivakanth Gopi

October 21, 2019

In this part of the course, we will talk about the notion of “local-
ity”. We can construct codes with good rate and distance which are
encodable and decodable in near-linear time (e.g., Expander codes).
And over large alphabets, we can achieve optimal rate-distance trade-
off with near-linear time encoding and decoding (e.g., Reed-Solomon
codes). We will also see later in the course that we can now con-
struct optimal binary codes for many random noise channels with
near-linear time encoding and decoding (e.g., Polar codes). This is
amazing progress. Can we do even better? In many scenarios, both
theoretical and practical, we will see that we only need to decode
a small part of the message or correct a small part of the corrupted
encoding. For example in distributed storage, to recover a single
crashed server, we shouldn’t be reading all the rest of the servers.
In such cases, linear time is not good enough, we need to do things
in sublinear time or perhaps even in constant time! Codes which
support sublinear algorithms for tasks like decoding, correction or
testing are called “local codes”.

Codes with locality

Let C : Σk → Σn be some code. Given some string z which is close
to some codeword C(x) in Hamming distance, there are three natural
algorithmic tasks we would like to do:

• Correction: Correct the errors in z to get C(x)

• Decoding: Decode z to get x

• Testing: Test whether z is actually close to some codeword.

Local codes allow us to do these tasks in sublinear time. We will
define locally decodable codes formally and give informal definitions
for locally correctable codes and locally testable codes. A q-query
locally decodable code (LDC) allows us to decode any message bit
xi with high probability by reading at most q locations of z. We will
define LDCs formally now.

Definition 1 (Locally decodable code (LDC) [KT00]). A code C : Σk →
Σn is a (q, δ, η)-LDC if, for every i ∈ [k], there exists a randomized decoder
(a probabilistic algorithm) Ai such that:

lecture 8: local codes 2

• For every message x ∈ Σk and z ∈ Σn such that ∆(C(x), z) ≤ δn,

Pr[Ai(z) = xi] ≥
1
2
+ η. (1)

• The decoder Ai queries non-adaptively at most q coordinates of z.

Locally Correctable Code: C is called a (q, δ, η)-LCC if there is a
randomized local correction algorithm which given some i ∈ [n],
reads at most q locations of z, which is δ-close to C(x), and outputs
C(x)i with good probability at least 1/2 + η. Any LCC can be converted into an LDC

while preserving relevant parameters.
In fact any linear code can be made
systematic i.e. the message is part of the
encoding. Therefore any linear LCC is
also an LDC trivially.

Locally Testable Code: C is called a q-query LTC if there is a ran-
domized local testing algorithm which reads at most q locations of z
and accepts if there are no corruptions, and rejects with good proba-
bility if there are too many corruptions.

Hadamard Code

To get familiar with the definitions, let us look at the example of
Hadamard code which is simultaneously a 2-query LDC, 2-query
LCC and 3-query LTC! The local correctability and testability of

Hadamard code plays an important role
in the proof of the PCP theorem.

The Hadamard code is a exponential length linear code, H : Fk
2 →

Fn
2 where n = 2k. The codeword coordinates are indexed by y ∈ Fk

2
and for a message x ∈ Fk

2, the encoding is given by H(x)y = 〈x, y〉
i.e. the codewords are just evaluations of linear functions on Fk

2. It is
not hard to see that it is a linear code and the minimum distance of
the code is n/2, in fact every non-zero codeword has weight exactly
n/2. We will now prove that the Hadamard is a 2-query LCC. We can
achieve local correction way up to half-minimum-distance.

Lemma 2. For every δ ∈ (0, 1/4), Hadamard code is a (2, δ, 1/2− 2δ)-
LCC.

Proof. Suppose we are given a corrupted version of a codeword

H(x), say H̃(x) s.t. ∆(H(x), H̃(x)) ≤ δn. To correct the symbol at

y ∈ Fk
2, the local corrector queries H̃(x) at z, z + y for a uniformly

random z ∈ Fk
2 and computes the parity of the two bits. With proba-

bility at least 1− 2δ, both the queries land in the uncorrupted part of

H̃(x) , and if that’s the case,

H̃(x)z + H̃(x)z+y = 〈x, z〉+ 〈x, z + y〉 = 〈x, y〉

which is the correct symbol.

Since the message symbols are part of the codeword (H(x)ei =

〈x, ei〉 = xi), it is also a 2-query LDC.
To test if some given word is close to some codeword is equivalent

to testing if a function f : Fk
2 → F2 is close to being linear. To test

lecture 8: local codes 3

this, a local tester can sample z, y ∈ Fk
2 and query f at z, y, z + y and

accept if
f (z + y) = f (z) + f (y).

This is the famous linearity test of Blum, Luby and Rubinfeld. It
clearly accepts a linear function and it will reject a function which is
far from linear with good probability (which requires a proof, but we
omit it here). Thus H is a 3-query LTC.

Reed-Muller Codes

We have seen that the Hadamard code, which is obtained by eval-
uating linear functions at all points of Fk

q has good local correction,
decoding and testing properties. But it is exponentially long. It is nat-
ural to try evaluating all low-degree polynomials over Fk

q. Since there
are more low-degree polynomials, the rate of our codes will improve.
These are precisely the Reed-Muller Codes.

Let α = (α1, α2, . . . , αm) be an m-tuple of non-negative integers and
let |α| = ∑m

i=1 αi denote the sum of its entries. Let x = (x1, x2, . . . , xm)

be a tuple of variables. We will denote the monomial xα1
1 xα2

2 . . . xαm
m by

xα. Note that the degree of xα is |α|. An m-variate polynomial over Fq

is given by
f (x1, x2, . . . , xm) = ∑

α

cαxα

where cα ∈ Fq are some coefficients. The set of all such polynomials
is denoted by Fq[x1, . . . , xm]. The (total) degree of the polynomial f
is defined as deg(f) = max{|α| : cα 6= 0}. The set of all degree such
polynomials of degree at most d is denoted by F≤d

q [x1, . . . , xm]. We
will also use degxi

(f) to denote the maximum degree of xi variable
in f , i.e., degxi

(f) = max{αi : cα 6= 0}. Let Πq(m, d) denote the set

of all polynomials in F≤d
q [x1, . . . , xm] with individual degrees of each

variable at most q− 1, i.e.,

Πq(m, d) = { f ∈ F≤d
q [x1, . . . , xm] : ∀i degxi

(f) ≤ q− 1}.

When q > d, Πq(m, d) = F≤d
q [x1, . . . , xm]. For example, Π2(m, d) is the

set of all m-variate “multilinear” polynomials of degree at most d. The restriction that degxi
(f) ≤ q − 1

is because of the fact that xq
i = xi

for all xi ∈ Fq. Therefore, if we only
care about evaluations over Fq, we can
reduce the degree of each variable to at
most q− 1.

Fact 3. There is a bijection between Πq(m, d) and evaluations of polyno-
mials in F≤d

q [x1, . . . , xm] over all points of Fm
q . The bijection is given by

f ∈ Πq(m, d) → 〈 f (a)〉a∈Fm
q . In particular, two distinct polynomials in

Πq(m, d) cannot have the same evaluation over all points of Fm
q .

Definition 4. A degree-d Reed-Muller code, denoted by RMq(m, d), is the
set of evaluations of polynomials Πq(m, d) over all points in Fm

q . Formally,

RMq(m, d) =
{
〈 f (a)〉a∈Fm

q : f ∈ Πq(m, d)
}

.

lecture 8: local codes 4

Note that Reed-Muller codes are linear codes, because an Fq-
linear combination of polynomials in Πq(m, d) is also in Πq(m, d). Is RM2(m, 1) the same the Hadamard

code? Almost, think about it!We will now try to understand the rate and distance of Reed-Muller
codes. RMq(m, d) is a subspace of Fn

q for n = qm. The dimension of
RMq(m, d) is:

dim(RMq(m, d)) = dim(Πq(m, d)) = |{α : |α| ≤ d, 0 ≤ αi ≤ q− 1}| .

There is no simple closed form expression for dim(RMq(m, d)). For
q = 2, dim(RM2(m, d)) = ∑d

r=0 (
m
r) = (m

≤d).
To simplify presentation, from now onwards, we will assume

that q > d unless otherwise specified. In this case, dim(RMq(m, d)) =
(m+d

d) &d md. We will now show that RMq(m, d) also have good dis-
tance.

Lemma 5 (Schwartz-Zippel). Suppose q > d and let f ∈ F≤d
q [x1, . . . , xm]

be a non-zero polynomial. Then:

Pr
a∈Fm

q
[f (a) = 0] ≤ d

q
.

By Lemma 5, any non-zero codeword of RMq(m, d) has weight at
least (1− (d/q))n. Therefore the relative distance of RMq(m, d) is at
least 1− (d/q).

Local correctability of Reed-Muller codes

We will now show that RMq(m, d) is a q-query LCC.

Lemma 6. Suppose d < q− 1 and (d + 1)δ < 1/2. Then RMq(m, d) is a(
d + 1, δ, 1

2 − (d + 1)δ
)

-LCC.

Proof. Suppose we are given some codeword f̃ which is δ-close to
some codeword obtained by the evaluation of a polynomial f ∈
Fq[x1, . . . , xm] at all points of Fm

q . There are two main ideas.

• The restriction of f onto a line in Fm
q is a univariate polynomial of

degree at most d. Let `(λ) = a + λb (λ ∈ Fq) be a line passing
through a ∈ Fm

q in direction b ∈ Fm
q . Then the restriction of f to `

is given by f |`(λ) = f (a + λb) which is a univariate polynomial of
degree at most d in λ.

• Given the values of a univariate polynomial p(λ) ∈ Fq[λ] of
degree at most d at d + 1 points, we can find p (which will be
unique) using interpolation.

Now say we want to correct the corrupted codeword f̃ at a point
a ∈ Fm

q , i.e., we want to find f (a). Then we can pass a line through

lecture 8: local codes 5

a in a random direction b ∈ Fm
q \ {0} and query f̃ at d + 1 points

(other than a) on the line `(λ) = a + λb. Since each point on the
line other than a is uniformly distributed, with probability at least
1− (d + 1)δ, f̃ is uncorrupted at the these points, i.e., it agrees with
f . Therefore we will know the values of p(λ) = f |`(λ) at d + 1 points
with that probability. Now we can use interpolation to find p and
thus p(0) = f |`(0) = f (a).

Note that the using Lemma 6, we can only tolerate δ < 1
2(d+1)

corruptions. Ideally, we want to be able to do local correction up to
half the minimum distance i.e. 1

2 · (1− d/q). One can improve the
above decoding by querying it on q points as follows.

Lemma 7. Suppose d < q and δ < 1
4 (1− d/q). Then RMq(m, d) is a(

q, δ, 1
2 −

2δ
1−d/q

)
-LCC.

Proof. Suppose we are given some codeword f̃ which is δ-close to
some codeword obtained by the evaluation of a polynomial f ∈
Fq[x1, . . . , xm] at all points of Fm

q . Say we want to correct the cor-
rupted codeword f̃ at a point a ∈ Fm

q , i.e., we want to find f (a). For
a random direction b ∈ Fm

q \ {0}, query f̃ at all points on the line
`(λ) = a + λb. Let p(λ) = f (a + λb) which is a univariate poly-
nomial of degree at most d. Now we are given p̃(λ) = f̃ (a + λb)
which is a noisy version of p. How do we find p from p̃? This is pre-
cisely Reed-Solomon decoding! So we can use the Berlekamp-Welch
algorithm we discussed in class previously to decode from half the
minimum distance of degree d Reed-Solomon codes. So, as long as,
the number of errors in p̃ is less than 1

2 (1− d/q) we can find p. In
expectation, the number of errors in p̃ is at most δ. By Markov in-
equality, the probability the number of errors in p̃ will be more than
1
2 (1− d/q) is at most 2δ/(1− d/q). Once we find p, we can find f (a)
as p(0) = f (a).

Lemma 7 allows local correction as long as δ is at most (1/4)th

of the minimum distance. This is already a big improvement over
Lemma 6. To get local correction closer to half-minimum-distance,
we just need one more idea. We need to query f̃ on a random de-
gree two curve passing through a instead of a random line! Because
points on a random two curve through a are pairwise independent,
we can use Chebychev inequality instead of Markov. This allows us
to do local correction up to 1

2 (1− 2d/q) distance which is closer to
half-minimum-distance. Can you think of a way to locally

correct Reed-Muller codes all the way
up to half-minimum-distance?

Table 1 shows the parameters of q-query LCCs C : Σk → Σn that
can be achieved using Reed-Muller codes.

In particular, Reed-Muller can achieve nε-query complexity with
constant δ and rate ε1/ε. In fact, Reed-Muller codes with locality of

lecture 8: local codes 6

q n

q = O(1) exp
(

Oq(k1/(q−1))
)

log n kO(log log k)

(log n)t, t > 1 k1+1/(t−1)+o(1)

n1/t, t ≥ 1 tt+o(t) · k

Table 1: Local correctability of Reed-
Muller codes. The fraction of errors
which can be tolerated by the local
correction algorithm, δ is some fixed
constant.

n1/2 cannot have rate more than 1/2. Can we construct nε-query
LCCs with rate approaching 1 for every ε > 0? Yes, multiplicity codes
from [KSY14] achieve this. The key idea is polynomial interpolation
using derivatives. Multiplicity codes are evaluations of low-degree
polynomials along with all partial derivatives up to a certain order.

References

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin.
High-rate codes with sublinear-time decoding. Journal of the
ACM (JACM), 61(5):28, 2014.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of
local decoding procedures for error-correcting codes. In
Proceedings of the 32nd annual ACM symposium on Theory of
computing (STOC 2000), pages 80–86. ACM Press, 2000.

	Codes with locality
	Hadamard Code
	Reed-Muller Codes
	Local correctability of Reed-Muller codes

