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In the last lecture, we have seen that Reed-Muller are LCCs
and therefore also LDCs. But for constant q, the length of a q-query
LCC based on Reed-Muller code is exp(k1/(q−1)) where k is the mes-
sage length. In this lecture, we will construct Matching Vector Codes
(MVCs) which are constant query LDCs of length exp(ko(1)). These
codes are based on the so called Matching Vector Families (MVFs)
which we will now define.

Matching Vector Families

Definition 1 (MVF). Let S ⊂ Zm \ {0} and let F = (U ,V) where
U = (u1, · · · , uk),V = (v1, · · · , vk) are lists of vectors ui, vi ∈ Zd

m. Then
F is called an S-MVF over Zd

m of size k (and dimension d) if ∀ i, j,

〈
ui, vj

〉= 0 if i = j

∈ S if i 6= j

If S is omitted, it implies that S = Zm \ {0}.

Lemma 2. If m is prime, then any MVF over Zd
m must have size k ≤

1 + dm−1.
Given two vectors x, y of dimensions
d1, d2 respectively, the tensor product
x ⊗ y is a d1d2-dimensional vector
given by (x ⊗ y)ij = xiyj. x⊗` denotes
x⊗ x⊗ · · · ⊗ x tensored ` times which
will have dimension d`1. Also note that
〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉 · 〈y1, y2〉.

Proof. Let U = (u1, . . . , uk) and V = (v1, . . . , vk) be the MVF. Con-
sider the k × k matrix A given by Aij =

〈
u⊗(m−1)

i , v⊗(m−1)
j

〉
=〈

ui, vj
〉m−1 . It is clear that rank(A) ≤ dm−1. By Femat’s little the-

orem, A is equal to Jk − Ik where Jk is the all ones matrix of size
k× k and Ik is the identity matrix of size k× k. Therefore rank(A) ≥
rank(Ik) − rank(Jk) = k − 1. Combining both the bounds we get
k ≤ 1 + dm−1.

With a little more effort, we can extend Lemma 2 and show that
for any prime power m, a MVF over Zd

m must have size k ≤ dm−1.
Thus for any constant prime power m, the size of a MVF can be only
be polynomially larger than the dimension. Surprisingly, we can do
much better if m is not a prime power!

Theorem 3 ([Gro99]). Let m = p1 p2 · · · pt where p1, p2 · · · , pt are
distinct primes with t ≥ 2, then there exists an explicitly constructible S-

MVF F in Zd
m of size k ≥ exp

(
Ω
(

(log d)t

(log log d)t−1

))
for some set S of size

|S| = 2t − 1.
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We will prove this in a later lecture. In the special case when The set S in Theorem 3 can be de-
scribed explicity as S = {a ∈ Zm : a
mod pi ∈ {0, 1} ∀ i ∈ [t]} \ {0}.

p1 = 2, p2 = 3, we have m = 6 (the smallest non-prime power) and
the following corollary:

Corollary 4. There is an explicitly constructible S-MVF F in Zd
6 of size

k ≥ exp
(

Ω
(

(log d)2

log log d

))
where S = {1, 3, 4} ⊂ Z6.

LDCs from MVFs

We will now show how to get LDCs from MVFs. The codes we ob-
tain from MVFs are called Matching Vector Codes (MVCs).

Theorem 5 ([Yek07, Efr09]). Suppose there exists a S-MVF over Zd
m

of size k. Let F be a finite field s.t. m divides |F| − 1. Then there exists a
(r, δ, η)-LDC C : Fk → Fn where n = md, r = |S|+ 1, η = 1

2 − rδ.

In particular if we have m = O(1) and k = dω(1), we get constant
query LDCs of length n = exp(ko(1)) over constant size alphabet.

Construction of MVCs

Let (U ,V) be a S-MVF over Zd
m where U = (u1, · · · , uk),V =

(v1, · · · , vk). We will use the vectors in U while encoding and use
the vectors in V while decoding. We will also need the following
simple fact.

Fact 6. If m divides |F| − 1, then there exists γ ∈ F s.t. γm = 1 and
γi 6= 1 for 0 < i < m. (Such a γ is called an element of order m.)

Proof. Let q = |F|. We know that F∗, the multiplicative group of non-
zero elements of F, is cylic. Suppose g is a generator for this group.
Then γ = g(q−1)/m has order m.

Fix some γ ∈ F of order m. Define the encoding C : Fk → Fn as
follows. For a = (a1, · · · , ak) ∈ Fk, define the function Fa : Zd

m → F Note that the function Fa is well defined
because γm = 1.as

Fa(x) =
k

∑
i=1

aiγ
〈x,ui〉 where x = (x1, . . . , xd) ∈ Zd

m.

The encoding C(a) of a message a ∈ Fk is the evaluation of Fa(x) at
all points x ∈ Zd

m, i.e.,

C(a) = 〈Fa(x)〉x∈Zd
m

.

Therefore the length of the encoding n = md.
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Local decoding

Suppose we want to decode the message symbol aτ (for some τ ∈ [k])
given a corrupted codeword f : Zd

m → F which is δ-close to Fa :
Zd

m → F. The local decoding algorithm is very similar to that of the
Reed-Muller local decoding we have seen in the last class.

Let r = |S|+ 1, note that r ≤ m. Pick a random z ∈ Zd
m uniformly

at random, and query f at r points on the line ` = {z + λvτ : 0 ≤ λ ≤
r − 1}. Since each point of the line ` is uniformly distributed over
Zd

m, the probability that f agrees with Fa at every point we queried is
at least 1− rδ.

Now conditioned on this event, we have values of Fa(z + λvτ) for
0 ≤ λ ≤ r− 1. Let p(λ) be the restriction of Fa to `, then

p(λ) = Fa(z + λvτ) =
k

∑
i=1

aiγ
〈z+λvτ ,ui〉

=
k

∑
i=1

aiγ
〈z,ui〉+λ〈vτ ,ui〉

= ∑
`∈{0}∪S

 ∑
i:〈vτ ,ui〉=`

aiγ
〈z,ui〉

 γλ`.

Let c` = ∑i:〈vτ ,ui〉=` aiγ
〈z,ui〉, then we can write

p(λ) = c0 + ∑
`∈S

c`γλ`.

Now comes the crucial observation. c0 has only one term in its sum-
mation because 〈vτ , ui〉 = 0 iff i = τ. Therefore c0 = aτγ〈z,uτ〉. So to
decode aτ , it is enough to find c0. Since we know the values of p(λ)
for r different values of λ, we get r linear equations in |S| + 1 = r
variables c0 and {c` : ` ∈ S}. The linear systems of equations can be
written as: 

1 . . . 1 . . .
1 . . . γ` . . .
1 . . . (γ`)2 . . .
...

...
1 . . . (γ`)r−1 . . .




c0
...

c`
...

 =


p(0)
p(1)
p(2)

...
p(r− 1)

 . (1)

This is invertible, because the coefficient matrix is a Vandermonde
matrix. Therefore, we can solve find c0 and from it we get aτ =

c0γ−〈z,uτ〉. This completes the proof of Theorem 5.
Combining Theorem 5 and Theorem 3 we get the following corol-

lary.
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Corollary 7. For every t ≥ 2, there exists constants Ct, Dt > 0 depending
only on t such that the following is true. There exists a

(
2t, δ, 1

2 − 2tδ
)

-

LDC C : Fk → Fn where

n = exp
(

exp
(

Ct(log k)1/t(log log k)1−1/t
))

and |F| ≤ Dt.

Choosing t = 2, we get 4-query LDCs of length n = exp(exp(
√

log k log log k)) =
exp(ko(1)) which is subexponential length. Note that 4-query LDCs
that we can get from Reed-Muller codes have length n = exp(k1/3).

Though Corollary 7 gives constant query LDCs over some con-
stant size alphabet, we can concatenate it with Hadamard code to
get binary LDCs with the same query complexity (but worse error
tolerance).

3-query LDCs of subexponential length

The smallest number of queries that Corollary 7 can give is 4. By
being more careful, we can reduce the queries to just 3. We solved
the linear system (1) just to find c0. But we don’t need to solve for all
the variables, we just need solve for c0. So we can hope to do it with
fewer than |S|+ 1 equations.

Let g(x) ∈ F[x] be a polynomial s.t. g(γ`) = 0 for all ` ∈ S and
g(1) 6= 0. Let g(x) = ∑λ∈T αλxλ for some coefficients αλ = 1. Such a
polynomial is called an S-decoding polynomial. Suppose we know the
values of p(λ) = Fa(z + λvτ) for λ ∈ T. Then we can recover c0 as:

∑
λ∈T

αλ p(λ) = ∑
λ∈T

αλ

(
c0 + ∑

`∈S
c`(γ`)λ

)

= c0 ∑
λ∈T

αλ + ∑
`∈S

c`

(
∑

λ∈T
αλ(γ

`)λ

)
= c0g(1) + ∑

`∈S
c`g(γ`)

= c0.

Historical Note: Yekhanin introduced the
idea of using MVFs to construct LDCs.
But he was only working over prime
m. By Lemma 2, he had to consider
growing m to get subexponential size
LDCs. And he constructed S-decoding
polynomials with sparsity 3 for such
growing m conditioned on their being
infinitely many Mersenne primes
(primes of the form 2t − 1). Efremenko
showed that one can use non-prime m
instead and used the construction of
Grolmusz to finally construct 3-query
subexponential LDCs unconditionally.

Therefore the number of queries is equal to the sparsity of the S-
decoding polynomial. Note that trivially we can always get sparsity
at most |S| + 1. But sometimes we can do better! For m = 511 =

7 · 73 and S = 1, 147, 365 and F = F29 , there exists an S-decoding
polynomial with sparsity 3 [Efr09]. This implies the existence of 3-
query LDCs with subexponential length. It was later shown that
any m of the form m = 2t − 1 = pq, wher t, p, q are prime, has this
property and m = 511 is the smallest such number [CFL+

13].
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Open Problem 8. Let m = p1 p2 . . . pt where p1, . . . , pt are distinct
primes and let S = {a : a mod pi ∈ {0, 1} ∀i} \ {0}. What is the smallest
sparsity of an S-decoding polynomial? For t = 3, can you get sparsity 3?

It might be tempting to try to get an S-decoding polynomial with
sparisty 2, that would give 2-query LDCs with subexponential length!
But this is too good to be true. We can show that sparsity should be
at least 3. But is there some deeper reason that this approach gets
stuck at 3 queries? Yes! We will prove in the next few lectures that
2-query LDCs (over constant size alphabet) need to have exponential
length.

In the next class we will prove Theorem 3 and see a lot of interest-
ing open questions about MVFs.
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