
Lecture 10: NL and coNL
Anup Rao

April 25, 2024

In this lecture, we continue our discussion of space complexity
classes. We first introduce a new definition. Given any set of boolean
functions S, we write coS to denote the set

{ f : 1 − f ∈ S}.

Thus coNP is the set of functions for which there is an efficiently
verifiable proof that f (x) = 0.

Fact 1. P = coP

Fact 2. L = coL

Fact 3. EXP = coEXP

We do not know if NP = coNP. To show that coNP ⊆ NP, it
would be enough to a polynomial time algorithm that can certify that
a boolean formula is unsatisfiable.

Fact 4. If P = NP, then NP = coNP.

On the other hand, we can show:

Theorem 5. For space constructible s(n), NSPACE(s(n)) = coNSPACE(s(n)).

Proof As usual we focus on the configuration graph. To prove
the theorem, it will be enough to be able to verify that there is no
path from two vertices u, v in the graph, in s(n) space. This would
show that if f (x) = 1 can be certified in space s(n), then f (x) = 0
can also be certified in space s(n). The other direction is completely
symmetric.

We shall prove how to do this by designing a sequence of algo-
rithms. Let Ci denote the set of vertices that are reachable from u in i
steps. Suppose the graph is of size at most 2s.

Claim 6. Given any vertex v and a number i ≤ 2s, there is a non-
deterministic space s(n) algorithm such that:

• If v ∈ Ci, then some computational path outputs 1

• If v /∈ Ci, then every computational path outputs 0.

The algorithm simply guesses a path from u to v and checks that
the path is a valid path of the graph by checking each edge in order.

lecture 10: nl and conl 2

Claim 7. Given the size of |Ci−1| = c, and a vertex v, there is a non-
deterministic space s(n) algorithm such that

• If v /∈ Ci, there is some computational path that outputs 1.

• If v ∈ Ci, then every computational path outputs 0.

Since the algorithm is given the size of Ci−1i, the algorithm guesses
each of the vertices of Ci−1 in increasing order, and for each one,
it checks that the vertex is different from the last vertex that was
guessed, and then uses Claim 6 to verify that the vertex is indeed a
member of Ci−1. It also makes sure that the given vertex is not v and
not a neighbor of v. It maintains a count of all the number of vertices
guessed and checks that |Ci−1| vertices are given. If any of the checks
fail, the algorithm outputs 0.

Finally, we argue that given the size of Ci−1, we can certify the size
of |Ci|.

Claim 8. Given the size of |Ci−1| = c′, there is a non-deterministic space
s(n) algorithm such that the algorithm either aborts or outputs |Ci| on every
computational path, and there is some computational path on which the
algorithm outputs |Ci|.

For each vertex v of the graph (in increasing order), the algorithm
uses Claims 6 and 7 to check whether v ∈ Ci or v /∈ Ci, and it main-
tains a count of the number of vertices in Ci.

Thus, we obtain an algorithm that can verify that v /∈ Cn in
O(s(n)) space. We first compute Cn by repeatedly using Claim 8

and then we apply Claim 7 to check whether v /∈ Cn.

TQBF

The TQBF function maps the set of totally quantified boolean formu-
las to 0 or 1. A totally quantified boolean formula is something that
looks like this:

ψ = ∃x1∀x2∃x3 · · · ∃xnϕ(x1, . . . , xn),

where here ϕ is a boolean formula on the variables x1, . . . , xn.

TQBF(ψ) = 1 if and only ψ is true.

TQBF’s help characterize PSPACE.

Lemma 9. TQBF(ψ) for ψ = ∃x1∀x2∃x3 · · · ∃xnϕ(x1, . . . , xn) can be
computed in space O(m · n), where size of ϕ is m. In other words, TQBF ∈
PSPACE.

lecture 10: nl and conl 3

Proof First note that for every fixing of x1, . . . , xn, ϕ can be com-
puted in space O(m). Let

A = ∀x2∃x3 · · · ∃xnϕ(0, x2, . . . , xn)

and
B = ∀x2∃x3 · · · ∃xnϕ(1, x2, . . . , xn).

We know that TQBF(ψ) = TQBF(A) ∨ TQBF(B) (similarly we will
have to compute A ∧ B when the first quantifier is a ∀). Writing down
A takes at most O(m) space. Let S(n) denote the space required to
compute TQBF(ψ). Now, computing A recursively uses S(n − 1)
space. After computing A, we can store the answer (one bit) and
erase all contents of the tape that was used to compute A. We then
write down B and compute TQBF(B) recursively. Overall, we have
that S(n) = S(n − 1) + O(m). As we know that S(0) = O(m), we can
conclude that S(n) = O(m · n).

Theorem 10. For every boolean f ∈ PSPACE, there is a polynomial time
computable function g mapping bits to truly quantified boolean formulas
such that f (x) = TQBF(g(x)).

Proof We shall show how to use the formula to encode connectiv-
ity in the configuration graph of the machine that computes f . This is
a graph of size 2t = 2poly(n).

We generate a formula ψi(A, B) in poly(n) time that checks whether
there is a path of length ≤ 2i from A to B. When i = 0. ψi(A, B) just
needs to check that B is the configuration that comes after A. Since
we know that there is a polynomial sized circuit C such that C(x, A)

computes the configuration that follows from A, we can construct a
circuit F of size poly(n) such that

F (A, B, x) =

1 if C(A, x) = B,

0 else.

Just like in the proof that SAT is NP-complete, we can generate a
polynomial sized formula F(y) such that ∃yF(y) is true if and only if
F (A, B, x) = 1.

For the general case, note that there is a path of length at most 2i

from A to B if and only if there is some vertex C in the graph such
that there is a path of length 2i−1 from A to C and a path of length
2i−1 from C to A. Thus we can define

ψi(A, B) = ∃C, ψi−1(A, C) ∧ ψi−1(C, B).

lecture 10: nl and conl 4

However, this doubles the size of the formula ψi−1 (which means
that after t steps we will be trying to generate a formula that is expo-
nentially big and this is impossible in polynomial time).

Indeed, we haven’t yet used the ∀ quantifiers. Let us use the same
idea as before to define the smaller formula:

ψi(A, B)

= ∃C, ∀X, ∀Y, (X = A ∧ Y = C) ∨ (X = C ∧ Y = B) ⇒ ψi−1(X, Y)

= ∃C, ∀X, ∀Y, (¬(X = A ∧ Y = C) ∧ ¬(X = C ∧ Y = B)) ∨ ψi−1(X, Y)

The end result is a formula of size poly(n, t) that checks for a path
of length 2t in the graph as required.

Lower Bounds on SAT

The material in this section was not discussed in class. We include it
here as you might find it interesting. Although we cannot say any-
thing non-trivial about the running time required to compute SAT,
or the space required to compute SAT, we can show that SAT cannot
have an algorithm that is both linear time and log space:

Theorem 11. There is no turing machine computing SAT in O(n) time
and O(log n) space.

In order to prove the theorem, we shall rely on two facts that we
have convinced ourselves of before:

Theorem 12. If t(n) ≥ Ω(n), any f ∈ NTIME(t(n)) can be reduced in
in logarithmic space and time O(t(n) log(t(n))) to computing SAT on a
formula of size O(t(n) log t(n)).

Earlier in the course we proved that the reduction is in polynomial
time, but in fact it is even in L. (Think about this!). The reduction
works by first computing a circuit that simulates the computation
of a machine, and then computing the formula that simulates the
execution of the circuit.

Another theorem we shall appeal to is the deterministic time hier-
archy theorem:

Theorem 13 (Time Hierarchy). If r, t are time-constructible functions
satisfying r(n) log r(n) = o(t(n)), then DTIME(r(n)) ⊊ DTIME(t(n)).

Proof of Theorem 11: Assume for the purpose of contradiction that
there is a turing machine computing SAT in O(n) time and O(log n)
space. The idea is to use the purported SAT algorithm to get an un-
reasonable speed up of computations. Suppose for the sake of con-
tradiction that SAT can be computed in linear time and logarithmic
space.

lecture 10: nl and conl 5

Suppose that f ∈ DTIME(n2) via the machine M f and f /∈
DTIME(npolylog(n)). Such an f exists by Theorem 13. We shall show
how to compute f in time O(npolylog(n)), giving us the desired con-
tradiction.

By appealing to Theorem 12, consider the machine M that runs as
follows on input x ∈ {0, 1}n:

1. Generate the formula ϕ of size n2 log n that simulates the machine
M f (x), using Theorem 12.

2. Check whether M f (x) accepts by computing SAT(ϕ) in time
O(n2 log n) and space O(log(n2 log n)) = O(log n).

M is not our final simulation. M computes f in time O(n2 log n)
and space O(log n).

Consider the configuration graph of M. This graph accepts if and
only if there is an accepting path of length t = O(n2 log n), which
happens if and only if there exist

√
t intermediate configurations

C1, . . . , C√
t, such that there is a path of length

√
t between intermedi-

ate configurations. In other words, f (x) = 1 if and only if

∃C1, . . . , C√
t, ∀i, Ci follows from Ci−1 in

√
t steps.

Each configuration takes only O(log n) bits to write down. So
once we guess all of these

√
t configurations, the problem of deter-

mining whether they determine an accepting of path of length t can
be encoded using a SAT formula of size O(

√
t · log n · polylog(t, n))

(by Theorem 12), so it can be solved in deterministic time O(
√

t ·
polylog(t, n)). Thus we can compute a formula ψ of size O(

√
t ·

polylog(t, n)) such that f (x) = 1 if and only if

∃C1, . . . , C√
t, ∃z, ψ(C1, . . . , C√

t, z).

The above is an instance of SAT and can then be solved determin-
istically in time O(

√
t · polylog(n, t)). Thus, overall, we get a simula-

tion in deterministic time O(
√

t · polylog(t, n)) = O(npolylog(n)) =

o(n2), contradicting the deterministic time hierarchy theorem.

Randomized Algorithm review

A probability space is a set Ω such that every element a ∈ Ω is as-
signed a number 0 ≤ Pr[a] ≤ 1 (called the probability of a), and
∑a∈Ω Pr[a] = 1.

An event in this space is a subset E ⊆ Ω. The probability of the
event is ∑a∈E Pr[a]. For example, imagine we toss a fair coin n times.
Then the probability space consists of the 2n possible outcomes of the

lecture 10: nl and conl 6

coin tosses. If E is the event that the first k coin tosses are heads, this
event has probability exactly 2−k. Given two events E, E′, we write
Pr[E|E′] to denote Pr[E ∩ E′]/ Pr[E′]. This is the probability that E
happens given that E′ happens. We say that E, E′ are independent if
Pr[E ∩ E′] = Pr[E] · Pr[E′]. In other words, E, E′ are independent if
Pr[E|E′] = Pr[E].

A real valued random variable is a function X : Ω → R. The number
of heads in the coin tosses is a random variable. The expected value
of a random variable X is defined as E [X] = ∑a∈Ω Pr[a] · X(a). The
following lemma is a very useful fact about random variables.

Lemma 14 (Linearity of expectation). If X, Y are real random variables,
then E [X + Y] = E [X] + E [Y].

Proof

E [X + Y] = ∑
a∈Ω

Pr[a] · (X(a) + Y(a))

= ∑
a∈Ω

Pr[a] · Y(a) + ∑
a∈Ω

Pr[a] · X(a)

= E [X] + E [Y] .

Here is an expectation basic magic
trick: Tell your audience to generate
two sequences of coin tosses—one
generated using 200 flips of a coin,
and the second generated by hand.
You leave the room, and they write
both sequences on a black board. Then
you come back into the room and
immediately point out the sequence
that was generated by hand. The trick:
a random sequence is very likely to
have a run of 7 heads or tails, while
people tend to not insert such a long
run into a sequence that they think
looks random.

For example, let us calculate the expected number of runs of see-
ing 7 contiguous heads or tails in a 200 coin tosses. Let Xi be 1 if
there are 7 heads or tails that start at the i’th position, and 0 other-
wise. If 1 ≤ i ≤ 194, then E [Xi] = Pr[Xi = 1] = 2 · 2−7 = 1/64. If
i ≥ 196, then Xi = 0. On the other hand, the total number of such
runs is ∑194

i=1 Xi. So by linearity of expectation, the expected number
of such runs is 194/64 ≈ 3.031.

In class, we discussed the waiting time to see the first heads. Sup-
pose you keep tossing a fair coin until you see heads. Let T be the
number of tosses you make. What is the expected value of T? The
key observation is that if the first toss is a heads, you stop with
T = 1. Otherwise, the rest of the experiment is exactly the same
as the original random experiment. So, we get:

E [T] = (1/2) · 1 + (1/2) · (1 + E [T])

⇒E [T] · (1 − 1/2) = 1

⇒E [T] = 2.

Randomized Algorithms

We shall give a few examples of problems where randomness helps
to give very effective solutions.

lecture 10: nl and conl 7

Matrix Product Checking

Suppose we are given three n × n matrices A, B, C, and want to check
whether A · B = C. One way to do this is to just multiply the ma-
trices, which will take much more than n2 time. Here we give a ran-
domized algorithm that takes only O(n2) time.

[H] 3 n × n-matrices A, B, C Whether or not A · B = C. Sample
an n coordiante column vector r ∈ {0, 1}0,1 uniformly at random
A(B(r)) = C(r)Output “Equal” Output “Not equal” Algorithm for
Multiplication Checking

The algorithm only takes O(n2) time. For the analysis, observe
that if AB = C, then the algorithm outputs “Equal” with probability
1. If AB ̸= C, the algorithm outputs “Equal” only when ABr = Cr ⇒
(AB − C)r = 0. We shall show that this happens with probability at
most 1/2.

Let D = AB − C. Then D ̸= 0, so let dij be a non-zero entry of
D. Then we have that the i’th coordinate (Dr)i = ∑k dik · rk. This
coordinate is 0 exactly when rj = (1/dij)∑k ̸=j dikrk. Finally, observe

Pr

[
rj = (1/dij) ∑

k ̸=j
dikrk

]

= ∑
a

Pr

[
a = (1/dij) ∑

k ̸=j
dikrk

]
· Pr

[
rj = a|a = (1/dij) ∑

k ̸=j
dikrk

]

≤ 1/2 ∑
a

Pr

[
a = (1/dij) ∑

k ̸=j
dikrk

]
= 1/2.

Exercise: Modify the above algorithm so that the probability the
algorithm outputs “Equal” when AB ̸= C is at most 1/4.

	TQBF
	Randomized Algorithm review
	Randomized Algorithms

