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The only way we know how to prove lower bounds on the run-
ning time of Turing Machines is via diagonalization. Can we hope to
show that P ̸= NP by some kind of diagonalization argument? In
this lecture, we discuss an issue that is an obstacle to finding such a
proof.

Definition 1 (Oracle Machines). Given a function O : {0, 1}∗ → {0, 1},
an oracle-machine is a Turing Machine that is allowed to use a special
oracle tape to make queries to O. Each query to O takes unit time.

We can define PO, NPO as functions computable in poly time (resp
nondeterministic poly time) with oracle access to O.

Then we have the following theorem:

Theorem 2. There exists an oracle A such that PA = NPA, and an oracle
B such that PB ̸= NPB.

The theorem gives a hint about one of the ways in which it will be
hard to determine whether or not P = NP. Any such proof must not
work in the relativized worlds where access to A, B is permitted. On
the other hand, the kinds of proofs that we have seen using diago-
nalization do relativize—the same argument would work even if the
machines have oracle access to some oracle O.
Proof Let A be the function that on input α, x outputs 1 if and
only if Mα(x) outputs 1 in 2|x| steps. Then PA = EXP, since every
exponential time computation can be simulated with access to A, To simulate a machine Mα, that runs in

time 2nc
, we first create a new machine

M′
α that runs Mα on the first n1/c bits

of its input. Then we call the oracle on
Mα′ (y), where y is the input of length
nc with x as the first n1/c bits of y.

and every query to A can be simulated in exponential time. Also
NPA = EXP, since in exponential time we can simulate all queries to
A and simulate all nondeterministic choices.

The second part is more interesting. We shall define an oracle
B : {0, 1}∗ → {0, 1} and a function f ∈ NPB such that f /∈ PB. f is
defined in terms of B as follows:

f (x) =

1 if there exists y such that |y| = |x| and B(y) = 1,

0 else.

We first show that f ∈ NPB: a non-deterministic machine can
guess y of the same length as x, and make a single query to verify
that B(y) = 1.
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To define B, we shall use diagonalization. Let M1, M2, . . . , Mi, . . . ,
be an enumeration of all machines that query B, with the feature
that every machine occurs infinitely often in the sequence. (Such an
enumeration exists if we allow our programming language to have
redundant lines). Our goal is to make sure that the i′th machine fails
to compute the correct value of f (x) in time 2n/10, for some n where
n = |x|. To do this we define the value of B gradually. We define
the value of B in phases. After each phase, we shall have defined the
value of B on a finite set of strings.

In Phase i, let t be so large that the value of B is not yet defined
on each string of length t. Then run the i’th machine Mi(1t) for 2t/10

steps. Each time Mi queries a string of B whose value has not yet
been defined, return 0 and define the value of B on that string to be
0. If Mi halts with value 1, then set B to be 0 on all strings of length
t. If Mi halts with value 0, then pick a string y of length t that Mi(1t)

did not query (note that such a string always exists since there are 2t

binary stings of length t and Mi did not take more than 2t/10 steps),
and set B(y) = 1.

Set the value of B on strings that are not defined by the above
process to be 0.

Suppose for the sake of contradiction that f ∈ PB. Then consider
the machine M that computes f . Let i be the index such that the i’th
machine in the enumeration is M and t be such that Mi(1t) was used
to define B on strings of length t during the i’th phase. Since the
machine occurs infinitely often, there is an i for which 2t/10 exceeds
the running time of the machine. Clearly, f (1t) ̸= M(1t) and hence
M does not compute f .

Randomized Algorithm review

Probability Spaces

A probability space is a set Ω such that every element a ∈ Ω is as-
signed a number 0 ≤ Pr[a] ≤ 1 (called the probability of a), and
∑a∈Ω Pr[a] = 1.

An event in this space is a subset E ⊆ Ω. The probability of the
event is ∑a∈E Pr[a]. For example, imagine we toss a fair coin n times.
Then the probability space consists of the 2n possible outcomes of the
coin tosses. If E is the event that the first k coin tosses are heads, this
event has probability exactly 2−k. Given two events E, E′, we write
Pr[E|E′] to denote Pr[E ∩ E′]/ Pr[E′]. This is the probability that E
happens given that E′ happens. We say that E, E′ are independent if
Pr[E ∩ E′] = Pr[E] · Pr[E′]. In other words, E, E′ are independent if
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Pr[E|E′] = Pr[E].
A real valued random variable is a function X : Ω → R. The number

of heads in the coin tosses is a random variable. The expected value
of a random variable X is defined as E [X] = ∑a∈Ω Pr[a] · X(a). The
following lemma is a very useful fact about random variables.

Lemma 3 (Linearity of expectation). If X, Y are real random variables,
then E [X + Y] = E [X] + E [Y].

Proof

E [X + Y] = ∑
a∈Ω

Pr[a] · (X(a) + Y(a))

= ∑
a∈Ω

Pr[a] · Y(a) + ∑
a∈Ω

Pr[a] · X(a)

= E [X] + E [Y] .

Here is an expectation basic magic
trick: Tell your audience to generate
two sequences of coin tosses—one
generated using 200 flips of a coin,
and the second generated by hand.
You leave the room, and they write
both sequences on a black board. Then
you come back into the room and
immediately point out the sequence
that was generated by hand. The trick:
a random sequence is very likely to
have a run of 7 heads or tails, while
people tend to not insert such a long
run into a sequence that they think
looks random.

For example, let us calculate the expected number of runs of see-
ing 7 contiguous heads or tails in a 200 coin tosses. Let Xi be 1 if
there are 7 heads or tails that start at the i’th position, and 0 other-
wise. If 1 ≤ i ≤ 194, then E [Xi] = Pr[Xi = 1] = 2 · 2−7 = 1/64. If
i ≥ 196, then Xi = 0. On the other hand, the total number of such
runs is ∑194

i=1 Xi. So by linearity of expectation, the expected number
of such runs is 194/64 ≈ 3.031.

In class, we discussed the waiting time to see the first heads. Sup-
pose you keep tossing a fair coin until you see heads. Let T be the
number of tosses you make. What is the expected value of T? The
key observation is that if the first toss is a heads, you stop with
T = 1. Otherwise, the rest of the experiment is exactly the same
as the original random experiment. So, we get:

E [T] = (1/2) · 1 + (1/2) · (1 + E [T])

⇒E [T] · (1 − 1/2) = 1

⇒E [T] = 2.

Randomized Algorithms

We shall give a few examples of problems where randomness helps
to give very effective solutions.

2-SAT

A two SAT formula is a CNF formula where each clause has exactly
2-variables. Here we give a randomized algorithm that can find a
satisfying assignment to such a formula, if one exists.
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Input: A two sat formula ϕ

Result: A satisfying assignment for ϕ if one exists
Set a = 0 to be the n-bit all 0 string;
for i = 1, 2, . . . , 100n2 do

if ϕ(a) = 1 then
Output a;

end
Let ai, aj be the variables of an arbitrary unsatisfied clause.
Pick one of them at random and flip its value ;

end
Output “Formula is not satisfiable”;

Algorithm 1: Algorithm for 2 SAT

If ϕ is not satisfiable, then clearly the algorithm has a correct out-
put. Now suppose ϕ is satisfiable and b is a satisfying assignment,
so ϕ(b) = 1. We claim that the algorithm will find b (or some other
satisfying assignment) within 100n2 steps with high probability. We
shall discuss the analysis in the next lecture.
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