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Randomized Algorithm review

Probability Spaces

A probability space is a set Ω such that every element a ∈ Ω is as-
signed a number 0 ≤ Pr[a] ≤ 1 (called the probability of a), and
∑a∈Ω Pr[a] = 1.

An event in this space is a subset E ⊆ Ω. The probability of the
event is ∑a∈E Pr[a]. For example, imagine we toss a fair coin n times.
Then the probability space consists of the 2n possible outcomes of the
coin tosses. If E is the event that the first k coin tosses are heads, this
event has probability exactly 2−k. Given two events E, E′, we write
Pr[E|E′] to denote Pr[E ∩ E′]/ Pr[E′]. This is the probability that E
happens given that E′ happens. We say that E, E′ are independent if
Pr[E ∩ E′] = Pr[E] · Pr[E′]. In other words, E, E′ are independent if
Pr[E|E′] = Pr[E].

A real valued random variable is a function X : Ω → R. The number
of heads in the coin tosses is a random variable. The expected value
of a random variable X is defined as E [X] = ∑a∈Ω Pr[a] · X(a). The
following lemma is a very useful fact about random variables.

Lemma 1 (Linearity of expectation). If X, Y are real random variables,
then E [X + Y] = E [X] + E [Y].

Proof

E [X + Y] = ∑
a∈Ω

Pr[a] · (X(a) + Y(a))

= ∑
a∈Ω

Pr[a] · Y(a) + ∑
a∈Ω

Pr[a] · X(a)

= E [X] + E [Y] .

Here is an expectation basic magic
trick: Tell your audience to generate
two sequences of coin tosses—one
generated using 200 flips of a coin,
and the second generated by hand.
You leave the room, and they write
both sequences on a black board. Then
you come back into the room and
immediately point out the sequence
that was generated by hand. The trick:
a random sequence is very likely to
have a run of 7 heads or tails, while
people tend to not insert such a long
run into a sequence that they think
looks random.

For example, let us calculate the expected number of runs of see-
ing 7 contiguous heads or tails in a 200 coin tosses. Let Xi be 1 if
there are 7 heads or tails that start at the i’th position, and 0 other-
wise. If 1 ≤ i ≤ 194, then E [Xi] = Pr[Xi = 1] = 2 · 2−7 = 1/64. If
i ≥ 196, then Xi = 0. On the other hand, the total number of such
runs is ∑194

i=1 Xi. So by linearity of expectation, the expected number
of such runs is 194/64 ≈ 3.031.
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In class, we discussed the waiting time to see the first heads. Sup-
pose you keep tossing a fair coin until you see heads. Let T be the
number of tosses you make. What is the expected value of T? The
key observation is that if the first toss is a heads, you stop with
T = 1. Otherwise, the rest of the experiment is exactly the same
as the original random experiment. So, we get:

E [T] = (1/2) · 1 + (1/2) · (1 + E [T])

⇒E [T] · (1 − 1/2) = 1

⇒E [T] = 2.

Randomized Algorithms

We shall give a few examples of problems where randomness helps
to give very effective solutions.

Matrix Product Checking

Suppose we are given three n × n matrices A, B, C, and want to check
whether A · B = C. One way to do this is to just multiply the ma-
trices, which will take much more than n2 time. Here we give a ran-
domized algorithm that takes only O(n2) time.

Input: 3 n × n-matrices A, B, C
Result: Whether or not A · B = C.
Sample an n coordiante column vector r ∈ {0, 1}0,1 uniformly

at random ;
if A(B(r)) = C(r) then

Output “Equal”;
else

Output “Not equal”;
end

Algorithm 1: Algorithm for Multiplication Checking

The algorithm only takes O(n2) time. For the analysis, observe
that if AB = C, then the algorithm outputs “Equal” with probability
1. If AB ̸= C, the algorithm outputs “Equal” only when ABr = Cr ⇒
(AB − C)r = 0. We shall show that this happens with probability at
most 1/2.

Let D = AB − C. Then D ̸= 0, so let dij be a non-zero entry of
D. Then we have that the i’th coordinate (Dr)i = ∑k dik · rk. This



lecture 13: randomized algorithms 3

coordinate is 0 exactly when rj = (1/dij)∑k ̸=j dikrk. Finally, observe

Pr

[
rj = (1/dij) ∑

k ̸=j
dikrk

]

= ∑
a

Pr

[
a = (1/dij) ∑

k ̸=j
dikrk

]
· Pr

[
rj = a|a = (1/dij) ∑

k ̸=j
dikrk

]

≤ 1/2 ∑
a

Pr

[
a = (1/dij) ∑

k ̸=j
dikrk

]
= 1/2.

Exercise: Modify the above algorithm so that the probability the
algorithm outputs “Equal” when AB ̸= C is at most 1/4.

2-SAT

A two SAT formula is a CNF formula where each clause has exactly
2-variables. Here we give a randomized algorithm that can find a
satisfying assignment to such a formula, if one exists.

Input: A two sat formula ϕ

Result: A satisfying assignment for ϕ if one exists
Set a = 0 to be the n-bit all 0 string;
for i = 1, 2, . . . , 100n2 do

if ϕ(a) = 1 then
Output a;

end
Let ai, aj be the variables of an arbitrary unsatisfied clause.
Pick one of them at random and flip its value ;

end
Output “Formula is not satisfiable”;

Algorithm 2: Algorithm for 2 SAT

If ϕ is not satisfiable, then clearly the algorithm has a correct out-
put. Now suppose ϕ is satisfiable and b is a satisfying assignment,
so ϕ(b) = 1. We claim that the algorithm will find b (or some other
satisfying assignment) within 100n2 steps with high probability. To
understand the algorithm, let us keep track of the number of coordi-
nates that a, b disagree in during the run of the algorithm. Observe
that during each run of the for loop, the algorithm picks a clause that
is unsatisfied under a. Since b satisfies this clause, a, b must disagree
in one of the two variables of this clause. Thus the algorithm reduces
the distance from a to b with probability 1/2.

Thus we can think of the algorithm as doing a random walk on the
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line. There are n + 1 points on the line, and at each step, if the algo-
rithm is at position i it moves to position i + 1 with probability 1/2
and to position i − 1 with probability at least 1/2. We are interested
in the expected time before the algorithm hits position 0. Let

ti = E [# steps before hitting position 0 from position i] .

Then we have the following equations:

t0 = 0,

ti = (1/2)ti+1 + (1/2)ti−1 + 1 i ̸= 0, n

⇒ ti − ti−1 = ti+1 − ti + 2

tn = 1 + tn−1.

Thus we can compute:

tn = (tn − tn−1) + (tn−1 − tn−2) + . . . + (t1 − t0)

= 1 + 3 + . . .

=
n

∑
j=1

(2j − 1) = 2

(
n

∑
j=1

j

)
− n = n(n + 1)− n = n2.

Thus the expected time for the algorithm to find a satisfying as-
signment is n2.

Lemma 2.

Pr[algorithm does not find satisfying assignment in 100n2 steps] < 1/100.

Proof We have that

n2 ≥ E [# steps to find assignment]

=
∞

∑
s=0

s · Pr[s steps to find assignment]

≥ Pr[at least 100n2 steps are taken] · 100n2.

Therefore,

Pr[more than 100n2 steps are taken] < 1/100.

Randomized Classes

There are several different ways to define complexity classes involv-
ing randomness. A turing machine with access to randomness is just
like a normal turing machine, except it is allowed to toss a random
coin in each step, and read the value of the coin that was tossed.
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BPP

We say that the randomized machine computes the function f if for
every input x, Prr[M(x, r) = f (x)] ≥ 2/3, where the probability is
taken over the random coin tosses of the machine M. BPP is the set
of functions that are computable by polynomial time randomized
turing machines in the above sense.

RP

We shall say that f ∈ RP if there is a randomized machine that
always compute the correct value when f (x) = 0, and computes the
correct value with probability at least 2/3 when f (x) = 1.

ZPP

Finally, we define the class ZPP to be the set of boolean functions
that have an algorithm that never makes an error, but whose expected
running time is polynomial in n.
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