Lecture 14: Randomized Complexity Classes
Anup Rao
May 9, 2024

Max Cut

Given a graph G = (V,E), a subset S C V is called a cut of the graph.
The size of the cut is the number of edges that cross from S to V — S.
It is known to be NP-hard to compute the MAX-cut of a graph. Here
we give a simple randomized algorithm that will compute a cut that
is half as big as the biggest cut in expectation.

The algorithm is just to pick the subset S at random, by includ-
ing every vertex in S with probability half. For each edge ¢, let X, be
the random variable that is 1 if e goes from S to V — S, and 0 other-
wise. Then we see that the size of the cut is exactly) .. X.. We can
compute E [X,] = 1/2, and so by linearity of expectation,

E

¥ X.

ecE

=) E[X]=[E|/2

ecE

Fingerprinting

Suppose Alice has an n-bit string x and Bob has an n-bit string y,
and they want to check that they are equal. Naively this takes n
bits of communication between them. We can do much better using
randomization.

Alice samples a random prime number p from the set of primes
that are less than cn Inn, for some constant c that we shall pick later.
She then sends p and x mod p to Bob. Bob checks that x mod p is
equal to y mod p. Thus they only need to communicate O(log) bits
in this process.

If x = y, this will always produce the right outcome. We shall
argue that if x # y, the probability that they make a mistake is going
to be very small. To do this, we need a theorem:

Theorem 1 (Prime number theorem). Let 71(a) denote the number of
(a) =1

a/lna

primes that are at most a. Then lim, s«

When x # y, the above process fails only when p divides x — y.
Since |x —y| < 2", x — y can have at most n prime factors. On the
other hand, by the prime number theorem, the number of primes of
size up to cnlnn is at least cnlnn/(In(cnlnn)) = Q(cn). Thus the
probability that the prime Alice picks divides x — y is at most O(1/c).

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

Randomized Classes

There are several different ways to define complexity classes involv-
ing randomness. A turing machine with access to randomness is just
like a normal turing machine, except it is allowed to toss a random
coin in each step, and read the value of the coin that was tossed.

BPP

We say that the randomized machine computes the function f if for
every input x, Pr,[M(x,r) = f(x)] > 2/3, where the probability is
taken over the random coin tosses of the machine M. BPP is the set
of functions that are computable by polynomial time randomized
turing machines in the above sense.

RP

We shall say that f € RP if there is a randomized machine that
always compute the correct value when f(x) = 0, and computes the
correct value with probability at least 2/3 when f(x) = 1.

VAd s

Finally, we define the class ZPP to be the set of boolean functions
that have an algorithm that never makes an error, but whose expected
running time is polynomial in 7.

The true identity of ZPP

Theorem 2. ZPP = RP N coRP.

Proof Suppose f € ZPP, via a randomized algorithm M whose ex-
pected running time is #(n). Consider the algorithm that simulates M
for 10t(n) steps, and outputs 0 if the simulation halts. Then clearly,
the algorithm only makes an error if the correct answer is 1. On the
other hand, the probability that running time of M exceeds 10t(n) is
at most 1/10 (or else the expected running time would exceed t(n).
Thus we obtain an RP algorithm. The same idea (reversing the roles
of 0 and 1) gives a coRP algorithm.

For the other direction, suppose f has an RP algorithm M; and a
coRP algorithm My. Then on input x consider the algorithm that al-
ternatively runs My(x), M1(x), Mp(x), ... until either M;(x) outputs
1, or My(x) outputs 0. If My (x) = 1, then it must be that f(x) = 1.
Similarly if My(x) = 0, it must be that f(x) = 0. In any case, one
of these two algorithms will verify the value of x in an expected con-
stant number of runs. W

LECTURE 14: RANDOMIZED COMPLEXITY CLASSES

Error reduction

It turns out the constant 2/3 is not very important in the above def-
initions. That is because every probabilistic polynomial time algo-
rithm with error 1/3 yields a probailistic polynomial time algorithm
with exponentially small error.

For example, if we have an algorithm M for f proving that f € RP,
we can obtain a new algorithm by running M(x) ¢ times. If any of the
runs outputs 1 we output 1. If all runs give an output of 0, we output
0.

We see that if f(x) = 0, then all runs will output 0 and our new
algorithm will output 0 with probability 1. On the other hand, if
f(x) = 1, the probability that all runs output 0 is 1/3, which is
exponentially small in ¢.

	Randomized Classes
	The true identity of ZPP
	Error reduction

