Lecture 14: Randomized Complexity Classes Anup Rao May 9, 2024

Max Cut

Given a graph G = (V, E), a subset $S \subset V$ is called a cut of the graph. The size of the cut is the number of edges that cross from S to V - S. It is known to be NP-hard to compute the MAX-cut of a graph. Here we give a simple randomized algorithm that will compute a cut that is half as big as the biggest cut in expectation.

The algorithm is just to pick the subset *S* at random, by including every vertex in *S* with probability half. For each edge *e*, let X_e be the random variable that is 1 if *e* goes from *S* to V - S, and 0 otherwise. Then we see that the size of the cut is exactly $\sum_{e \in E} X_e$. We can compute $\mathbb{E}[X_e] = 1/2$, and so by linearity of expectation,

$$\mathbb{E}\left[\sum_{e\in E} X_e\right] = \sum_{e\in E} \mathbb{E}\left[X_e\right] = |E|/2.$$

Fingerprinting

Suppose Alice has an n-bit string x and Bob has an n-bit string y, and they want to check that they are equal. Naively this takes n bits of communication between them. We can do much better using randomization.

Alice samples a random prime number p from the set of primes that are less than $cn \ln n$, for some constant c that we shall pick later. She then sends p and $x \mod p$ to Bob. Bob checks that $x \mod p$ is equal to $y \mod p$. Thus they only need to communicate $O(\log n)$ bits in this process.

If x = y, this will always produce the right outcome. We shall argue that if $x \neq y$, the probability that they make a mistake is going to be very small. To do this, we need a theorem:

Theorem 1 (Prime number theorem). Let $\pi(a)$ denote the number of primes that are at most *a*. Then $\lim_{a\to\infty} \frac{\pi(a)}{a/\ln a} = 1$.

When $x \neq y$, the above process fails only when p divides x - y. Since $|x - y| \leq 2^n$, x - y can have at most n prime factors. On the other hand, by the prime number theorem, the number of primes of size up to $cn \ln n$ is at least $cn \ln n / (\ln(cn \ln n)) = \Omega(cn)$. Thus the probability that the prime Alice picks divides x - y is at most O(1/c).

Randomized Classes

There are several different ways to define complexity classes involving randomness. A turing machine with access to randomness is just like a normal turing machine, except it is allowed to toss a random coin in each step, and read the value of the coin that was tossed.

BPP

We say that the randomized machine computes the function f if for every input x, $\Pr_r[M(x,r) = f(x)] \ge 2/3$, where the probability is taken over the random coin tosses of the machine M. **BPP** is the set of functions that are computable by polynomial time randomized turing machines in the above sense.

RP

We shall say that $f \in \mathbf{RP}$ if there is a randomized machine that always compute the correct value when f(x) = 0, and computes the correct value with probability at least 2/3 when f(x) = 1.

ZPP

Finally, we define the class **ZPP** to be the set of boolean functions that have an algorithm that *never* makes an error, but whose *expected* running time is polynomial in *n*.

The true identity of **ZPP**

Theorem 2. $ZPP = RP \cap coRP$.

Proof Suppose $f \in \mathbb{ZPP}$, via a randomized algorithm *M* whose expected running time is t(n). Consider the algorithm that simulates *M* for 10t(n) steps, and outputs 0 if the simulation halts. Then clearly, the algorithm only makes an error if the correct answer is 1. On the other hand, the probability that running time of *M* exceeds 10t(n) is at most 1/10 (or else the expected running time would exceed t(n). Thus we obtain an **RP** algorithm. The same idea (reversing the roles of 0 and 1) gives a *co***RP** algorithm.

For the other direction, suppose f has an **RP** algorithm M_1 and a co**RP** algorithm M_0 . Then on input x consider the algorithm that alternatively runs $M_0(x), M_1(x), M_0(x), \ldots$ until either $M_1(x)$ outputs 1, or $M_0(x)$ outputs 0. If $M_1(x) = 1$, then it must be that f(x) = 1. Similarly if $M_0(x) = 0$, it must be that f(x) = 0. In any case, one of these two algorithms will verify the value of x in an expected constant number of runs.

Error reduction

It turns out the constant 2/3 is not very important in the above definitions. That is because every probabilistic polynomial time algorithm with error 1/3 yields a probailistic polynomial time algorithm with exponentially small error.

For example, if we have an algorithm *M* for *f* proving that $f \in \mathbf{RP}$, we can obtain a new algorithm by running M(x) *t* times. If any of the runs outputs 1 we output 1. If all runs give an output of 0, we output 0.

We see that if f(x) = 0, then all runs will output 0 and our new algorithm will output 0 with probability 1. On the other hand, if f(x) = 1, the probability that all runs output 0 is $1/3^t$, which is exponentially small in *t*.