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Error reduction

The choice of the constant 2/3 in the definition of BPP is not crucial,
as the following theorem shows:

Theorem 1 (Error Reduction in BPP). Suppose there is a randomized
polynomial time machine M, a boolean function f and a constant c such
that Prr[M(x, r) = f (x)] ≥ 1/2 + n−c. There for every constant d, there
is a randomized polynomial time machine M′ such that Prr[M′(x, r) =

f (x)] ≥ 1 − 2−nd
.

To prove the theorem, we shall need to appeal to the Chernoff-
Hoeffding Bound:

Theorem 2. Let X1, . . . , Xn be independent random variables such that
each Xi is a bit that is equal to 1 with probability ≤ p. Then Pr[∑n

i=1 Xi ≥
pn(1 + ϵ)] ≤ 2−ϵ2np/4.

Proof of Theorem 1: On input x, the algorithm M′ will run M
repeatedly nk times for some constant k (that we shall fix soon), and
then output the majority of the answers. Let Xi the binary random
variable that takes the value 1 only if the output of the i’th run is
incorrect.

We have that X1, . . . , Xnk are independent random variables, and
each is equal to 1 with probability at most 1/2 − n−c. Thus,

Pr[∑
i

Xi > nk/2] = Pr[∑
i

Xi > nk(1/2 − n−c)(1/2)/(1/2 − nc)]

≤ Pr[∑
i

Xi > nk(1/2 − n−c)(1 + 2n−c)]

< 2−O(n−2c)nk/8

Set k to be large enough so that this probability is less than 2−nd
.

By brute force search, we can easily prove:

Theorem 3. BPP ⊆ EXP.

Since RP is the same as the set of functions for which a random
witness is a good witness,

Theorem 4. RP ⊆ NP.
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Theorem 5. Every function in BPP has polynomial sized circuits.

The above theorem again easily following from the Chernoff-
Hoeffding bound. We can first amplify the error probability so that
the probability of error is less than 2−n. Then by the union bound,
for each input length, there must be some fixed string r such that
M(x, r) = f (x) for each of the 2n choices of x. Then we can use a
circuit to hardcode this r and compute f in polynomial size.

We do not know whether BPP = P and this is a major open ques-
tion. However, there have been some interesting conditional results.
For example, work of Impagliazzo, Nisan and Wigderson has led to
the following theorem:

Theorem 6. If there is some function f ∈ EXP such that for every constant
ϵ > 0, f cannot be computed by a circuit family of size 2ϵn, then BPP = P.

The theorem is interesting because the assumptions don’t seem to
say anything useful. The assumption is that there is a function that
can be computed by exponential time turing machines but cannot
be computed by subexponential sized circuits. This fact is cleverly
leveraged to derandomize any randomized computation. The proof
of this theorem is outside the scope of this course.

Schwartz-Zippel Lemma

Recall that a polynomial p(x, y, z) is an expression of the form

14x2y5z8 − 3x3 + 17y6z3.

The degree of the polynomial is the maximum of the sums of the
powers of the variables in any monomial. So in the last example, the
degree is 15.

The Schwartz-Zippel Lemma turns out to be quite useful for ran-
domized algorithms:

Lemma 7. Let p(x1, . . . , xn) be a polynomial of degree d, such that p is
not the 0 polynomial. Let S be any set of numbers, and let a1, . . . , an be n
random numbers drawn from S. Then Pr[p(a1, . . . , an) = 0] ≤ d/|S|.

We shall the proof of this Lemma in the next lecture. Now, let us
quickly discuss an application of the lemma.

Polynomial Identity Testing

One can ask whether there are interesting problems that are known
to be in BPP but not known to be in P. Although there are many ex-
amples of problems for which the fastest algorithms are randomized



lecture 15: error reduction, schwartz-zippel, polynomial identity testing 3

(for example, primality testing), there are not so many examples for
which the only known algorithm is randomized. A key such example
is the problem of polynomial identity testing.

We are given an arithmetic circuit (namely a circuit that uses mul-
tiplication and addition gates). The goal is to determine whether the
polynomial computed by the circuit is identically 0. There is a subtle
issue here that needs to be clarified. Note that two different polyno-
mials may compute the same function on a particular set of inputs.
For example, if the inputs are all binary, then x2

i = xi for any variable
xi. Indeed, if we changed the problem above to ask whether or not
the arithmetic circuit computes the 0 function on binary inputs, then
we obtain an NP-complete problem.

There is a simple randomized algorithm for identity testing. We
pick random integers from a large enough set and evaluate the circuit
on those inputs. If the circuit computes a non-zero polynomial, it can
be shown that the output will be non-zero with high probability. To
actually make this work, we need to make sure that evaluating the
circuit can be done efficiently. Indeed the evaluation can easily com-
pute a number that is as big as 22s

with a circuit of size s, which is
too big to manipulate. It turns out that one can just do all the evalu-
ations modulo a large random prime number p and obtain the same
guarantees.

We do not know how to get a deterministic algorithm for this
problem.
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