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The Schwartz-Zippel Lemma turns out to be quite useful for random-
ized algorithms. We stated the lemma, last time, this time we give its
proof:

Lemma 1. Let p(x1, . . . , xn) be a polynomial of degree d, such that p is
not the 0 polynomial. Let S be any set of numbers, and let a1, . . . , an be n
random numbers drawn from S. Then Pr[p(a1, . . . , an) = 0] ≤ d/|S|.

Proof We prove the lemma by induction on n. When n = 1, the
theorem follows from the fact that any non-zero degree d polynomial
in one variable has at most d roots. Thus p(a) = 0 only when a is a
root, which happens with probability at most d.

For the general case. Let us write the polynomial in the form

p(x1, . . . , xn) = xℓn · q(x1, . . . , xn−1) + r(x1, . . . , xn),

where here r is a polynomial in which the degree of xn is at most
ℓ− 1. So we simply gather all the terms which have maximum degree
in xn.

Now let E1 be the event that p(a1, . . . , an) = 0, and let E2 be the
event that q(a1, . . . , an−1) = 0. Then we have that

Pr[E1] = Pr[E1 ∧ E2] + Pr[E1 ∧ ¬E2]

= Pr[E2] · Pr[E2|E1] + Pr[¬E2] · Pr[E1|¬E2]

≤ Pr[E2] + Pr[E1|¬E2].

By induction, since q is a degree d − ℓ polynomial, Pr[E2] ≤ (d −
ℓ)/|S|. Since after x1, . . . , xn−1 are fixed in ¬E2, we have that p(a1, . . . , an−1, xn)

is a non-zero polynomial of degree ℓ, we have that Pr[E1|¬E2] ≤
ℓ/|S|. Thus Pr[E1] ≤ d/|S|.

Using polynomials to give fast algorithms for matching

Given a bipartite graph with n vertices on the left and n vertices on
the right, a perfect matching is a set of n disjoint edges. It is a classi-
cal problem in graph algorithms to figure out if a graph has a per-
fect matching. Here we present a randomized algorithm using the
Schwartz-Zippel lemma.
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Recall that the determinant of an n × n matrix is a polynomial of
the form

det(M) = ∑
π

sign(π)
n

∏
i=1

Mi,π(i),

where here the sum is over all permutations π : {1, . . . , n} →
{1, . . . , n}, and sign(pi) is one of ±1.

The algorithm is as follows. First define the matrix of variables:

Mi,j =

xi,j if (i, j) is an edge of the graph,

0 otherwise.

Observe that det(M) is the 0 polynomial if and only if the graph
does not have a perfect matching. So, the algorithm simply sets xi,j

to be a random number in {1, 2, . . . , 100n} and evaluates det(M). If
det(M) = 0 we conclude the graph has no perfect matching. Other-
wise we conclude that the graph does have a perfect matching. Since
the degree of the polynomial is at most n, the probabilty that this
algorithm makes an error is at most 1/100 by the Schwartz-Zippel
Lemma.

It turns out that the determinant can be computed in O(log2 n)
circuit-depth, so it can be computed extremely fast in parallel. This
gives a very fast parallel time algorithm for this classic problem.

The Permanent

The permanent of an n × n matrix M is defined to be ∑π ∏n
i=1 Mi,π(i),

where the sum is taken over all permutations π : [n] → [n].
The permanent is important because it is a complete function for

the class #P:

Definition 2. A function f : {0, 1}n → N is in #P if there exists a
polynomial p and a poly time machine M such that

f (x) = |{y ∈ {0, 1}p(|x|) : M(x, y) = 1}|

For example, in #P one can count the number of satisfying assign-
ments to a boolean formula, which is potentially much harder than
just determining whether the formula is satisfiable or not. One can
show that any such problem can be reduced in polynomial time to
computing the permanent of a matrix with 0/1 entries. On the other
hand, the permanent itself can be computed in #P. Thus the perma-
nent is #P-complete.
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