
Lecture 17: Finite fields, Random self-reducibility of
permanent, IP
Anup Rao

May 21, 2024

Finite fields

An important fact that we will use a few times is that the integers
modulo a prime number p are a finite field. This means, that not only
can you add and multiply elements modulo p, you can divide:

Fact 1. Given a prime p, for every a ̸= 0 mod p, there is a number b such
that

ab = 1 mod p.

Proof By Euclid’s greatest common divisor algorithm, the greatest
common divisior of x, y can be expressed as bx + cy, for two integers
b, c. Apply that result to a, p. Since the greatest common divisor of
a, p is 1, we get

1 = ba + cp,

which proves that ab = 1 mod p.

This ability to do division means that a lot of the results that we
prove over the real numbers also apply over the finite field Fp (the in-
tegers modulo p). For example, every degree d univariate polynomial
over Fp has at most d roots, and the Schwartz-Zippel lemma holds as
well.

Polynomial interpolation

We have talked about how every univariate degree d polynomial
has at most d roots. This fact can be generalized to the following
statement:

Fact 2. Given d + 1 distinct elements a1, . . . , ad+1 ∈ F and b1, . . . , bd+1 ∈
F, there is a unique degree d polynomial f such that f (ai) = bi for all i.

Proof First, we construct a degree d polynomial f with the re-
quired properties:

f (x) =
d+1

∑
i=1

bi ·
∏j ̸=i(x − aj)

∏j ̸=i(ai − aj)
.

This is a degree d polynomial satisfying all the constraints. Now,
to show that it is unique, suppose there was another degree d poly-
nomial g that had the same properties. Then g − f is a degree d



lecture 17: finite fields, random self-reducibility of permanent, ip 2

polynomial with d + 1 roots, since for every i, g − f evaluates to 0 on
input ai. That contradicts the fact that a non-zero degree d polyno-
mial can have at most d roots.

The Permanent is randomly self-reducible

Recall that the permanent of an n × n matrix M is defined to be

perm(M) = ∑
π

n

∏
i=1

Mi,π(i),

where the sum is taken over all permutations π : [n] → [n].
Recall that the permanent is important because it is a complete

function for the class #P (discussed in the last lecture).
Here is an interesting observation: if you can compute the perma-

nent with high probability on a random matrix with entries from Fp,
then you can also compute it with good probability on an arbitrary
matrix with entries from Fp. Indeed, given a n × n matrix M, let R be
a matrix with random entries from Fp. Then the function

f (x) = perm(M + x · R)

is a univariate polynomial of degree n. But each of the values

f (1), f (2), . . . , f (n + 1)

is the evaluation of the permanent on a uniformly random matrix.
So, if we have an algorithm that computes the permanent on random
matrices with probability of error 1/(3(n + 1)), this algorithm will
compute all of the values of

f (1), . . . , f (n + 1)

with probility of error at most 1/3. From these values, we can re-
construct the f using polynomial interpolation, and then evaluate
f (0) = perm(M), to obtain the desired permanent.

Interactive proofs

One way to define NP is via the idea of a proof system. NP is the set
of functions f for which there is a polynomial time verifier algorithm
V such that given any x with f (x) = 1, there exists a prover P that
can prove to the verifier that f (x) = 1 by providing a polynomial
sized witness w for which V(x, w) = 1, yet if f (x) = 0, no such
prover exists.



lecture 17: finite fields, random self-reducibility of permanent, ip 3

What happens if we allow the verifier to have a longer interactive
conversation? Presumably, giving the verifier the ability to adaptively
ask the prover questions based on his previous responses should
give the verifier more power, and so allow the verifier to verify the
correctness of the value for a larger set of functions. In fact, this
does not give the verifier additional power: for if there is such an
interactive verifier V I for verifying that f (x) = 1, we can design a
non-interactive verifier that does the same job. The new verifier will
demand that the prover provide the entire transcript of interactions
between V I and a convincing prover. The new verifier can then verify
that the transcript is correct, and would have convinced V I . Thus, if f
has an interactive verifier, then f ∈ NP.

The story is more interesting if we allow the verifier to be random-
ized. We say that f ∈ IP if there is a polynomial time randomized
verifier V such that

Completeness For all x, if f (x) = 1, there is an oracle P such that
Prr[VP(x, r) = 1] ≥ 2/3.

Soundness For all x, if f (x) = 0, for every oracle P, Prr[VP(x, r) =

1] ≤ 1/3.

Since any prover can be simulated in polynomial space, if f ∈ IP,
then f ∈ PSPACE. The algorithm for f can just try all possible
sequences of messages from the prover until it finds a sequence of
messages that convinces the verifier, if such a sequence exists.

Theorem 3. IP ⊆ PSPACE.

It is easy to check that allowing the prover to be randomized does
not change the model.

We shall eventually prove that IP = PSPACE (and so IP is poten-
tially much more powerful than NP).

Example: Graph non-Isomorphism

Two graphs on n vertices are said to be isomorphic if the vertices of
one of the graphs can be permuted to make the two equal.

Consider the problem of testing whether two graphs are not iso-
morphic: the boolean function f such that f (G1, G2) is 1 if and only if
G1 is not isomorphic to G2. f ∈ coNP, since the prover can just send
the verifier the permutation that proves that they are isomorphic. We
do not know if f ∈ NP, but it is easy to prove that f ∈ IP.

Here is the simple interactive protocol:

1. The verifier picks a random i ∈ {1, 2}.



lecture 17: finite fields, random self-reducibility of permanent, ip 4

2. The verifier randomly permutes the vertices of Gi and sends the
resulting graph to the prover.

3. The prover responds with b ∈ {1, 2}.

4. The verifier accepts if i = b.

If G1, G2 are not isomorphic, then any permutation of Gi deter-
mines i, so the prover can determine i and send it back. However, if
G1, G2 are isomorphic, then the graph that the prover receives has the
same distribution whether i = 1 or i = 2, thus the prover can guess
the value of i with probability at most 1/2. Repeating the protocol
several times, the verifier can make the probability of being duped by
a lying prover exponentially small.


	Finite fields
	Polynomial interpolation
	The Permanent is randomly self-reducible
	Interactive proofs
	Example: Graph non-Isomorphism

