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Balancing Arithmetic Circuits

In this section, we finally prove something that I mentioned in
my very first lecture: it is possible to balance every arithmetic circuit.

Homogenization

First, we need the concept of a homogenous polynomial/circuit.
A polynomial is homogenous if all of its monomials have the same
degree. An arithmetic circuit is homogenous if every gate computes a
homogenous polynomial. Given a polynomial f of degree d, we write
fi to denote its i’th homogenous part. So, f = f0 + . . . + fd.

A useful fact is that every circuit can be made homogenous in the
following sense:

Theorem 1. If f is a degree d polynomial that can be computed by a circuit
of size s, then f0, . . . , fd can all be computed by a homogenous arithmetic
circuit of size O(sd2).

Proof The idea of the proof is to compute g0, . . . , gd for every gate
g in the circuit of size s. If g = u + v, then gi = ui + vi, so the
homogenous parts of g can be computed from the homogenous parts
of u, v. If g = u · v, then gi = u0 · vi + u1 · vi−1 + . . . + ui · vi, so
once again the homogenous parts of g can be computed. All of these
operations may increase the size of the circuit by a factor of O(d2).

The key claim

The key claim we shall make is the following:

Theorem 2. Suppose f (X1, . . . , Xn) is a degree d homogenous polynomial
computed by a homogenous arithmetic circuit of size s. Then we can express

f =
s

∑
i=1

uivi,

where for every i, ui and vi both have degree at least d/3 and at most 2d/3,
ui occurs as a gate in the original circuit, and vi can be computed by the
same circuit after replacing some of the gates with the constants 0 or 1.
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Balancing

Theorem 2 is extremely powerful. In particular, it implies that one
can compute f using a circuit of depth at most O((log s)(log d)). To
see this, generate a circuit of depth O(log s) that computes f from
inputs ui, vi as above. Then, since each of ui, vi can be computed by
circuits of size s, we can recursively apply the Theorem to these poly-
nomials and continue. In each step, the degree of the polynomials we
are working with drops by a constant factor, so there can be at most
O(log d) steps.

Even if f is not homogenous, we can use Theorem 1 to make a
homogenous circuit computing the homogenous parts of f in size
O(sd2). Then, applying Theorem 2, we obtain a circuit of depth
O((log sd2) + log d) ≤ O((log s + log d) log d) computing the homoge-
nous parts of f . We can then sum up these parts adding another
O(log d) to the depth to recover f . As a consequence, we obtain:

Theorem 3. If f is a polynomial of degree d that can be computed using an
arithmetic circuit of size s, then f can be computed by an arithmetic circuit
of depth O((log s + log d) log d).

Permanent

Another consequence of Theorem 2 is that the permanent re-
quires exponentially sized monotone arithmetic circuits. A monotone
arithmetic circuit is a circuit that does not have any negative con-
stants in it. Recall that the permanent is the polynomial:

perm(M) = ∑
σ

n

∏
i=1

Mi,σ(i),

where the sum runs over all possible permutations σ.
The key fact is that in a monotone circuit, there cannot be any

cancellation of monomials. If the permanent can be computed with a
size s monotone circuit, then by the theorem, we obtain

perm =
s

∑
i=1

uivi,

where here ui, vi also have no negative coefficients. But then it has to
be the case that every monomial of the product uivi is a monomial of
the permanent.

Now, fix i, and consider a fixed monomial m of ui. By the above
considerations, this monomial can contain at most 1 variable from
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each column of the matrix and at most one variable from each row,
because this holds for all of the monomials of the permanent. Let S
denote the set of rows that have a variable of the monomial, and let
T denote the set of columns that a variable of the monomial. So, we
must have |S| = |T|. Every monomial of vi must contain a variable
from each of the rows in Sc, and a variable from each of the columns
of Tc, so that the product with m will be a monomial in the perma-
nent. So, all of the monomials of vi must touch the same set of rows
and columns! Repeating the same argument, we get that all of the
monomials of ui must also touch the same set of rows and columns.

The degree constraints on ui, vi imply that for S, T as above,

n/3 ≤ |S|, |T| ≤ 2n/3.

Thus, the number of monomials in ui is at most |S|!, and the number
of monomials in vi is at most |T|!. The permanent has a total of n!
monomials, so the fraction of the monomials covered by ui, vi is at
most

|S|! · (n − |S|)!
n!

=

(
n
|S|

)−1
≤

(
n

n/3

)−1
≤ 2Ω(n).

This implies that s ≥ 2Ω(n), since all monomials must be covered
by some term.

Proving the theorem

Finally, let us turn to proving the theorem. The given circuit
is assumed to be homogenous. In fact, it is no loss of generality to
assume that every gate of the circuit computes a polynomial of de-
gree at most d. This is because if the circuit contains a + gate that
computes the polynomial 0, then we can eliminate that gate. Once
all such gates have been eliminated, we see that every gate computes
a polynomial whose degree is larger than the degrees of its inputs.
Thus, any gate computing a polynomial of degree larger than d can-
not be connected to the output gate, and it can be dropped.

Next we run a process similar to what we have seen when found
a way to balance Boolean formulas. Let a1, a2, . . . be a sequence of
gates, where a1 the output gate, and given ai, ai+1 is the gate that
feeds into ai of larger degree (breaking ties arbitrarily). Since the
product of two gates adds the degrees, the degree of the polynomial
computed by ai+1 must be at least 1/2 of the degree of ai. Let ai+1 be
the first gate in this sequence with

d/3 ≤ deg(ai+1) ≤ 2d/3.
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By construction, we must have ai = ai+1 · b, and the degree of ai must
be greater than 2d/3. Now, imagine replacing the gate ai with a new
variable Y. Let g(X1, . . . , Xn, Y) denote the output of the circuit after
making this change, so f (X1, . . . , Xn) = g(X1, . . . , Xn, ai), where here
ai denotes the polynomial computed by the gate ai.

We claim:

Claim 4. If a gate r in the circuit computing g computes a polynomial
containing the monomial Y · h, then the degree of r in the circuit for f must
be deg(ai) + deg(h).

The claim holds by induction. It is true for the gate ai, and given
that the claim holds for the inputs of r, it must hold for r, since we
have eliminated all gates of the circuit for f that compute the 0 poly-
nomial.

Next, we claim that the degree of Y in g is at most 1. Indeed, if
the circuit ever multiplies a polynomial containing Y with another
polynomial containing Y, then the degree of this gate in the original
circuit has to be at least 4d/3, but there are no such gates, since we
got rid of them in the first step of the proof. Thus, we must have

g = h · Y + q,

for some polynomials h(X1, . . . , Xn), q(X1, . . . , Xn).
Now, set u1 = ai+1, v1 = h · b. Then we have

f = u1 · v1 + q.

v1 can be computed by considering the path from b to the output
gate, replacing the gate ai+1 by 1, and replacing every polynomial
that is added to this path by 0.

Moreover, q can be computed by substituting Y = 0 in the cir-
cuit computing g. Thus, q must be homogenous and have the same
degree as f (or be 0). Since q can be computed by a circuit of size at
most s − 1, the proof is completed by induction.
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