Lecture 2: Circuits and Turing Machines
Anup Rao
March 28, 2024

LAsT TIME, we introduced the computational models of branching
programs and Boolean circuits. We discussed how every function
f :4{0,1}* — {0,1} can be computed by a Branching program.
Just like branching programs, boolean circuits can compute every
function:

Theorem 1. Every function f : {0,1}" — {0,1} can be computed by a
circuit of size at most O(2") and depth O(n).

Proof We construct the circuit recursively. When n = 1, there
is clearly a constant sized circuit that computes f, since f must be
either a constant, x; or —xj.

For n > 1, let fy denote the function on n — 1 bits given by fo(x) =
f(x,0), and f1(x) = f(x,1). Then by induction we can compute fo, f1
recursively, and combine them using the value of the last bit to obtain
f, as in Figure 1. When x, = 1, the circuit outputs fi(x1,...,%,-1),
and when x,, = 0, the circuit outputs fo(x1,...,x,_1).

If S, is the size of the resulting circuit when the underlying func-
tion takes an n bit input, we have proved that

S, <25,_1+5.

Expanding this recurrence, and using the fact that S; < 5, we get
that

n .
Sp< ) 255=5. (2" —1) <10-2",
i=1

where here we used the formula for computing the sum of a geomet-
ric series. l

The above theorem is not the best result we know about this sub-
ject. In fact, we know:

Theorem 2. Every function f : {0,1}" — {0,1} can be computed by a
circuit of size at most O(2" /n).

You will be asked to prove this on your homework.



LECTURE 2: CIRCUITS AND TURING MACHINES

fy fo

Turing Machines

A TURING MACHINE IS ESSENTIALLY A PROGRAM written in a par-
ticular programming language. The program has access to three
arrays and three pointers:

* x which is accessed using the pointer i. x is an array that can be
read but not written into.

* y which is accessed using the pointer j. y can be read and written
into.

¢ z which is accessed using the pointer k. z can only be written into.

The machine is described by its code. Each line of code reads the
bits x;,y;, and based on those values, (possibly) writes new bits into
Yj, 2, and then possibly after incrementing or decrementing i, j, k,
jumps to a different line of code or stops computing. Initially, the
input is written in x and the goal is for the output to be written in
z at the end. i, j, k are all set to 1 to begin with. The arrays all have
a special symbol to denote the beginning of the tape and a special
symbol to denote the blank parts of the tape.

For example here is a program that copies the input to the output
using a single line:

1. If x; is empty, then HALT. Else set z; = x; and increment each of
i, k. Jump to step 1.

Here is another that outputs the input bits which are in odd loca-
tions:

1. If x; is empty, then HALT. Else set z; = x;, increment each of i,k
and jump to step 2.

Figure 1: Recursive construction of a
circuit for f.

2



LECTURE 2: CIRCUITS AND TURING MACHINES

2. If x; is empty, then HALT. Else increment each of i, k and jump to
step 1.

The exact details of this model are not important. The main reason
we introduce it is to have a fixed model of computation in mind. For
example, it is easy to show that adding more tapes or increasing the
alphabet size does not change the model significantly, as we shall
discuss further next time.

Resources of Turing Machines

Once we have fixed the model, we can start talking about the com-
plexity of computing a particular function f : {0,1}* — {0,1}. Fix
a turing machine M that computes a function f. There are two main
things that we can measure:

e Time. We can measure how many steps the turing machine takes
in order to halt. Formally, the machine has running time T () if on
every input of length 1, it halts within T(n) steps.

e Space. We can measure the maximum value of j during the run of
the turing machine. We say the space is S(n) if on every input of
length 1, j never exceeds S(n).

The following fact is immediate:

Fact 3. The space used by a machine is at most the time it takes for the
machine to run.

Robustness of the model: Extended Church-Turing Thesis

THE REASON TURING MACHINES ARE SO IMPORTANT is because of
the Extended Church-Turing Thesis. The thesis says that every efficient
computational process can be simulated using an efficient Turing
machine as formalized above. Here we say that a Turing machine is
efficient if it carries out the computation in polynomial time.

The Church-Turing Thesis is not a mathematical claim, but a wishy
washy philosophical claim about the nature of the universe. As far
as we know so far, it is a sound one. In particular if one changed
the above model slightly (say by providing 10 arrays to the machine
instead of just 3, or by allowing it to run in parallel), then one can
simulate any program in the new model using a program in the
model we have chosen.

Claim 4. A program written for an L-tape machine that runs in time T(n)
can be simulated by a program with 1 input tape, 1 work tape and 1 output
tape in time O(L - T(n)?).

The original (non-extended) thesis
made a much tamer claim: that any
computation that can be carried out by
a human can be carried out by a Turing
machine.



LECTURE 2: CIRCUITS AND TURING MACHINES

Sketch of Proof The idea is to encode the contents of all the new
work arrays into a single work tape. To do this, we can use the first

L locations on the work tape to store the first bit from each of the L
arrays, then the next L locations to store the second bit from each of
the L arrays, and so on. To encode the location of the pointers, we
increase the size of the alphabet so that exactly one symbol from each
tape is colored red. This encodes the fact that the pointer points to
this symbol of the tape. The actual pointer in the new Turing ma-
chine will then do a big left to right sweep of the array to simulate a
single operation of the old machine. l

4



	Turing Machines
	Resources of Turing Machines
	Robustness of the model: Extended Church-Turing Thesis

