
Lecture 3: Lower bounds for Circuits and Turing
Machines
Anup Rao

April 2, 2024

At the end of lecture last time, we were discussing how changes
to the model of Turing machines do not lead to big changes in the
measures of complexity associated with Turing machines. There are a
few results of this type:

Claim 1. A program written for an L-tape machine that runs in time T(n)
can be simulated by a program with 1 input tape, 1 work tape and 1 output
tape in time O(L · T(n)2).

Sketch of Proof The idea is to encode the contents of all the new
work arrays into a single work tape. To do this, we can use the first
L locations on the work tape to store the first bit from each of the L
arrays, then the next L locations to store the second bit from each of
the L arrays, and so on. To encode the location of the pointers, we
increase the size of the alphabet so that exactly one symbol from each
tape is colored red. This encodes the fact that the pointer points to
this symbol of the tape. The actual pointer in the new Turing ma-
chine will then do a big left to right sweep of the array to simulate a
single operation of the old machine.

Claim 2. A program written using symbols from a larger alphabet Γ that
runs in time T(n) can be simulated by a machine using the binary alphabet
in time O(log |Γ| · T(n)).

Sketch of Proof We encode every element of the old alphabet in
binary. This requires O(log |Γ|) bits to encode each alphabet sym-
bol. Each step of the original machine can then be simulated using
O(log |Γ|) steps of the new machine.

The following theorem should not come as a surprise to most of
you. It says that there is a machine that can compile and run the code
of any other machine efficiently:

Theorem 3. There is a turing machine M such that given the code of
any Turing machine α and an input x as input to M, if α takes T steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We shall say that a machine runs in time t(n) if for every input
x, the machine halts after t(|x|) steps (here |x| is the length of the



lecture 3: lower bounds for circuits and turing machines 2

string x). Similarly, we can measure the space complexity of the ma-
chine. The crucial point is that small changes to the model of Turing
machines does not affect the time/space complexity of computing
a particular function in a big way. Thus it makes sense to talk about
the running time for computing a function f , and this measure is not
really model dependent.

Lower bounds—Counting arguments

We have shown that every function f : {0, 1}n → {0, 1} can be
computed by a circuit of size at most O(2n/n), and on the other hand
we show that for n large enough there is a function that cannot be
computed by a circuit of size less than 2n/(3n). The lower bound we
prove here was first shown by Shanon. He introduced a really simple
but powerful technique to prove it, called a counting argument.

Theorem 4. For every large enough n, there is a function f : {0, 1}n →
{0, 1} that cannot be computed by a circuit of size 2n/3n.

Proof We shall count the total number of circuits of size s, where
s > n. To define a circuit of size s, we need to pick the logical op-
erator for each (non-input) gate, and specify where each of its two
inputs come from. There are at most 3 choices for the logical oper-
ation, and at most s choices for where each input comes from. So
the number of choices for each non-input gate is at most 3s2. The
number of choices for an input gate is at most n < 3s2. So, the total
number of choices for each gate is at most 3s2 + n, and the number of
possible circuits of size s is at most

(3s2 + n)s ≤ (4s2)s = 2s log(4s2) < 23s log s,

when n > 4.
This means that the total number of circuits of size 2n/3n is less

than 23· 2n
3n ·n = 22n

. On the other hand, the number of functions
f : {0, 1}n → {0, 1} is exactly 22n

. Thus, not all these functions can be
computed by a circuit of size 2n/(3n).

Indeed, the above argument shows that the fraction of functions
f : {0, 1}n → {0, 1} that can be computed by a circuit of size 2n/4n is

at most 2
3
4 ·2

n

22n = 1
22n−2 , which is extremely small.

Similar arguments can be used to show that not every function has
an efficient branching program (as you will do on your homework).
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