
Lecture 5: Complexity classes, Hierarchy Theorems
Anup Rao

April 9, 2024

Let us talk complexity classes. We are interested in classifying func-
tions according to their complexity, so it makes sense to lump func-
tions into sets of similar complexity:

Definition 1. Define DTIME(t(n)) to be the set of functions

DTIME(t(n)) = { f : {0, 1}∗ → {0, 1}| f is computable in time O(t(n))}.

Similarly,

Definition 2. Define DSPACE(s(n)) to be the set

DSPACE(s(n)) = { f : {0, 1}∗ → {0, 1}| f is computable in space O(s(n))}.

Once we have these definitions, we can try to define what it means
for a function f : {0, 1}∗ → {0, 1} to be efficiently computable. A
reasonable definition of efficient computation should allow enough
time to read all of the input, which takes Ω(n) time. So we should
definitely include DTIME(n) in our set of efficiently computable
functions. Further, if one algorithm calls another as a subroutine, and
both are efficient, we would like to say that the combined algorithm
is also efficient. The minimal class satisfying these assumptions is the
class

Definition 3. P =
⋃

c≥1 DTIME(nc).

Of course there is a whole spectrum of classes above P. For exam-
ple:

Definition 4. EXP =
⋃

c≥1 DTIME(2nc
).

And,

Definition 5. E =
⋃

c≥1 DTIME(2cn).

For space bounded computation, we need to have enough space to
manipulate pointers into the inputs, which takes log n bits, before we
get interesting classes. The first such class is:

Definition 6. L = DSPACE(log n).

Definition 7. PSPACE =
⋃

c≥1 DSPACE(nc).

Obviously if t(n) = O(t′(n)), then DTIME(t(n)) ⊆ DTIME(t′(n)).
But is the containment strict? Does giving a Turing Machine more
time actually allow it to compute things that it cannot compute with-
out the extra time?

lecture 5: complexity classes, hierarchy theorems 2

In the last lecture, we showed that there are natural functions
that cannot be computed by Turing machines. To do this, we used the
technique of diagonalization. In this lecture, we shall combine diag-
onalization with the universal simulation ability of Turing machines
to show that Turing machines with more time/space are strictly more
powerful than Turing machines with less time/space.

We are going to use diagonalization to show that Turing Machines
that have more time can compute things that are not computable by
Turing Machines with less time. Such a result is called a hierarchy
theorem, it shoes that there is a hierarchy of power that comes with
increasing computational resources. The basic idea is that a Turing
Machine with more resources can simulate every machine that re-
quires fewer resources and do the opposite of what it does on some
input. To formally prove the hierarchy theorems, we need some more
concepts:

Definition 8 (Time Constructible Functions). We say that the map
t : N → N is time constructible if t(n) ≥ n and on input x there is a
Turing Machine that computes t(|x|) in time O(t(|x|)).

Almost every running time or space bound you can think of like
n5, 2n, 22n

is time constructible and space constructible. (But not all
functions are time constructible, since not all functions can be com-
puted by turing machines). We shall also need a result about simu-
lating turing machines by Turing Machines, that we discussed in the
third lecture:

Theorem 9. There is a turing machine M such that given the code of any
Turing machine α and an input x as input to M, if α takes T ≥ 1 steps to
compute an output for x, then M computes the same output in O(CT log T)
steps, where here C is a number that depends only on α and not on x.

We are now ready to prove our first hierarchy theorem:

Theorem 10 (Time Hierarchy). If r, t are time-constructible functions
satisfying r(n) log r(n) = o(t(n)), then DTIME(r(n)) ⊊ DTIME(t(n)).

Proof Recall that Mα denotes the Turing Machine whose code is α.
The key idea is to use a function very similar to the one we defined
in the last lecture for our diagonalization proofs:

f (α) =

1 if Mα(α) halts and outputs 0 after t(|α|) steps of the simulator,

0 else.

We claim:

Claim 11. f can be computed in time O(t(n)).

lecture 5: complexity classes, hierarchy theorems 3

To compute f , we first compute t(|α|) and then apply Theorem
9 to simulate Mα(α) for t(|α|) steps of the simulator. So, f can be
computed in time O(t(n)).

On the other hand, we shall show:

Claim 12. f cannot be computed in time O(r(n)).

If β is the code of a machine that computes f in time c · r(n). Let
Cβ be such that the execution of r steps of the machine Mβ can be
simulated in Cβr log r steps by the universal machine. Then there
must be some binary string β′ that represents the same machine as β,
but is long enough so that

t(|β′|) > Cβ · c · r(|β′|) log r(|β′|)

This is because by assumption r(n) log r(n) = o(t(n)), and so for
large enough n,

t(n) > 2Cβ · c · r(n) log(r(n)) > Cβ · c · r(n) log(c · r(n)).

Moreover, we can always add redundant lines to the code in β, until
the code becomes long enough for t(|β′|) > 2Cβ · c · r(|β′|) log r(|β′|).

If Mβ(β′) = 0, then Mβ′(β′) = 0 and so f (β′) = 1 by the guarantee
of Theorem 9. If Mβ(β′) = 1, Mβ′(β′) = 1, and so f (β′) = 0, which
proves that Mβ does not compute f .

