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Last time we discussed the time-hierarchy theorem. Similarly, one
can prove a Space hierarchy theorem. To do this, we need the concept
of a space constructible function.

Definition 1 (Space Constructible Functions). We say that the map
s : N → N is space constructible if s(n) ≥ log n and on input x there is
a Turing Machine that computes s(|x|) in space O(s(|x|)).

We saw in lecture 3 that:

Theorem 2. There is a turing machine M such that given the code of any
Turing machine α and an input x as input to M, if α takes S ≥ log |x| space
to compute an output for x, then M computes the same output in O(CS)
space, where here C is a number that depends only on α and not on x.

One can prove the following space hierarchy theorem:

Theorem 3 (Space Hierarchy). If q, s are space-constructible functions
satisfying q(n) = o(s(n)), then DSPACE(q(n)) ⊊ DSPACE(s(n)).

We leave out the details of the proof, since they are exactly the
same as the previous result.

Here are some consequences of these hierarchy theorems:

Corollary 4. P ̸= Exp.

Proof On the one hand, P ⊆ DTIME(nlog n). On the other hand,
by the time hierarchy theorem, DTIME(nlog n) ̸= DTIME(2n), since
nlog n = o(2n).

Hierarchy Theorem for Circuits

We define the class SIZE(s(n)) to be the set of functions f : {0, 1}∗ →
{0, 1} that can be computed by circuit families of size s(n).

We have proved the following theorems:

Theorem 5. Every function f : {0, 1}∗ → {0, 1} is in SIZE(O(2n/n)).

Theorem 6. For every large enough n, there is a function f : {0, 1}n →
{0, 1} that cannot be computed by a circuit of size 2n/3n.

We can use this theorem to prove a hierarchy bound for size.
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Theorem 7. There is a constant c such that for every functions s(n), s′(n)
satisfying 2n/n > s′(n) > cs(n) > n, we have that SIZE(s(n)) ⊊
SIZE(s′(n)).

Proof Suppose every function on n bits can be computed using a
circuit of size k2n/n. Set c = 3k. Let ℓ be such that k2ℓ/ℓ = s′(n).
Then every function on ℓ bits can be computed by a circuit of size
s′(n). On the other hand, there is some function on ℓ bits that cannot
be computed using a circuit of size 2ℓ/3ℓ = s′(n)/c, as required.

NP

In the last class, we introduced the concept of complexity classes.
We saw the classes P, L, E, EXP and PSPACE. These classes were Recall: L ⊆ P ⊆ PSPACE ⊆ EXP.

obtained by considering functions that can be computed with limited
time or limited space. Today, we explore a different kind of class, the
class NP.

NP is interesting chiefly because many problems that we would
like to solve efficiently with a computer, but cannot solve, belong
to NP. The list of such problems includes essentially all problems
solved today with machine learning, and many other practically
important problems. Before giving the definition of NP, let us see
some examples of problems in NP.

Independent Set Given a graph G and a number k, does the graph
have an independent set of size k? Let ISet(G, k) = 1 if the graph
has an independent set, and 0 otherwise. Recall that an independent set is a set of

nodes that does not contain any edges.
Subset sum : Given a list of numbers a1, . . . , aℓ, t, is there some subset

of the numbers a1, . . . , aℓ that sums to t? Let SubSum(a1, . . . , aℓ, t) =
1 if there is such a subset, and 0 otherwise.

Composite numbers : Given a number N, decide if it is composite or
not. Let Comp(N) = 1 if N is composite, and 0 otherwise.

Matching : Given a graph G and a number k, are there k disjoint
edges in the graph? Let Match(G, k) be 1 if there are k such edges,
and 0 otherwise.

All of these problems have something in common: although it
may be hard to efficiently compute the functions they define, it is
very easy to check a solution if one is given to us! For example, if
ISet(G, k) = 1, then there is a an independent set S of size k, and
given G, S, k, one can check that S is an independent set of size k in
polynomial time. Similarly, if SubSum(a1, . . . , aℓ, t) = 1, then there is
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a subset of the numbers S ⊆ {a1, . . . , aℓ}, that if given as input can be
verified to have the sum t.

NP is the class of all functions f that have the above property,
where if f (x) = 1, then this can be checked efficiently by an efficient
verifier:

Definition 8. f : {0, 1}∗ → {0, 1} is in NP if there exists a polynomial p
and a polynomial time machine V such that for every x ∈ {0, 1}∗,

f (x) = 1 ⇔ ∃w ∈ {0, 1}p(|x|), V(x, w) = 1
The witness w is restricted to being
of polynomial length to ensure that
the running time of V is actually
polynomial in the length of x. If we
allowed the witness to be arbitrarily
long, then V would be allowed to run
very long computations on x.

V is usually called the verifier and w is usually called the witness
or certificate or proof. For example, in the independent set problem
above, the witness w would correspond to an independent set, and
the verifier V would be the program that checks that w is in fact an
independent set of size k in the input graph.

Many important combinatorial optimization problems can be cast
as problems in NP.

P, NP and EXP

Fact 9. P ⊆ NP ⊆ EXP.

To see the first containment, observe that if f ∈ P, there is a poly-
nomial time Turing machine M with M(x) = f (x). But M itself is a
verifier for f (with a witness of length 0) proving that f ∈ NP.

For the second containment, if f ∈ NP, then f has a verifier
V(x, w). Consider the algorithm that on input x runs over all possible
w and checks if V(x, w) = 1. If any witness makes V(x, w) = 1, the
algorithm outputs 1, otherwise it outputs 0. This algorithm computes
f and runs in exponential time, so f ∈ EXP.

Nondeterministic Machines, and a Hierarchy Theorem

The original definition of NP was by considering Turing machines
that are allowed to make non-deterministic choices: namely after
each step, the machine is allowed to make a guess about which state
to transition to in the next step. The machine computes 1 if there is a
single accepting computational path, and 0 otherwise.

We can define NTIME(t(n)) in the same way as DTIME(t(n)), it
is the set of functions computable by non-deterministic machines in
time O(t(n)), and then you can check that NP =

⋃
c NTIME(nc). Just

as for deterministic time, there is a non-deterministic time hierarchy
theorem:
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Theorem 10. If r, t are time-constructible functions satisfying r(n + 1) =
o(t(n)), then

NTIME(r(n)) ⊊ NTIME(t(n)).
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