
Lecture 7: NP-completeness
Anup Rao

April 16, 2024

Polynomial time Reductions

One of the central questions in complexity theory is whether or not
P = NP. Although we don’t know the answer to this question, we
can prove a lot about the class NP, via the concept of polynomial
time reductions:

Definition 1. A function f is polynomial time reducible to a function g if
there is a polynomial time computable function h such that f (x) = g(h(x)).
We write f ≤P g.

Note that the above definition is not the only one that makes
sense. In general it makes sense to allow our reductions to make
multiple calls to the problem being reduced to. However, we will be
able to prove many of our results using the stronger notion above, so
that is what we shall use.

Definition 2. We say f is NP-hard if g ≤P f for every g ∈ NP. We say f
is NP-complete if f is NP-hard and f ∈ NP.

Theorem 3. Here are some easy facts that one can prove about reductions:

• If f ≤P g and g ≤P h, then f ≤P h.

• If f is NP-hard and f ∈ P, then P = NP.

• If f is NP-complete, then P = NP if and only if f ∈ P.

NP-complete problems

The above definitions make sense because we do know of examples
of NP-complete problems.

Circuit-Sat

Definition 4. CircuitSat : {0, 1}∗ → {0, 1} is the function that views its
input as a circuit C and outputs 1 iff ∃x such that C(x) = 1.

I have claimed in class that circuits can simulate Turing Machines.
Here is what you can actually prove in this regard:

Theorem 5. If a function f : {0, 1}∗ → {0, 1} can be computed in
time t(n) by a Turing machine, then for every n there is a circuit of size
O (t(n) log t(n)) that computes f restricted to the inputs of size n.



lecture 7: np-completeness 2

Although we did not prove this theorem in class, we sketched
how you could find a circuit of size O(t(n)2) that computes f . The
idea was to add a layer of gates that maintains the entire state of the
Turing machine—contents of all tapes, pointers, and the line of code
being executed. Then we add a new layer that computes this con-
figuration after one execution step of the Turing machine, using the
earlier configuration as input. A single configuration can be written
down using O(t(n)) gates since we only need to write down the val-
ues of the tapes up to O(t(n)) coordinates. The new configuration
can be computed from the old one with O(t(n)) gates as well. After
repeating this O(t(n)) times, we obtain the final configuration of the
Turing machine, which must include the value of f (x).

Theorem 6. CircuitSat is NP-complete.

Proof It is clear that CircuitSat is in NP. Next we show that for
every f ∈ NP, f ≤P CircuitSat. Let V be a verifier for f . Then to
compute f (x), the reduction will build the circuit Cx(w) that com-
putes V(x, w), where here w are the input variables to the circuit
and x is the input. Since f (x) = 1 if and only if there exists w such
that Cx(w) = 1, we can determine the value of f by computing
CircuitSat(Cx).

3SAT

A boolean formula is an expression of the form

(x1 ∧ ¬x2) ∨ (x7 ∧ ¬(x6 ∨ ¬x2)).

Formally: it is a circuit where the only allowed gates are ∨,∧,¬,
and every gate has fan-out at most 1. Input gates are allowed to
repeat. As usual, size of the gates is number of gates, and the fan-in
is allowed to be at most 2. The formula is said to be in conjunctive
normal form (CNF) if it is an AND of OR’s. Similarly, it is said to
be in disjunctive normal form (DNF) if it is an OR of ANDS. For
example

(x1 ∨ ¬x2) ∧ (¬x7 ∨ x9 ∨ ¬x1)

is a CNF.
We have the following lemma:

Lemma 7. Every function f : {0, 1}ℓ → {0, 1} can be computed by a CNF
(resp. DNF) of size ℓ2ℓ.

Proof For each input z such that f (z) = 0, we add the literal xi to
the clause if zi = 0 and ¬zi otherwise. So for example, if f (0, 1, 0) =



lecture 7: np-completeness 3

0, we add the clause (x1 ∨ ¬x2 ∨ x3). Then note that each clause is 0
on exactly one input, and all inputs x for which f (x) = 0 make some
clause 0. Every other input evaluates to 1. So, the CNF computes f .
The resulting formula is of size ℓ2ℓ. The case of DNF’s is symmetric.

We define SAT : {0, 1}∗ → {0, 1} to be the function that takes as
input a boolean formula F, and outputs 1 if and only if there is a an
x such that F(x) = 1. A 3-CNF formula is a CNF where every clause
has at most 3 variables. For example:

(x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∨ x4 ∨ ¬x1) ∧ · · · .

3SAT : {0, 1}∗ → {0, 1} is the function that takes as input 3-CNF and
outputs 1 if and only if the formula is satisfiable. Next we show that
even this function is NP-complete Is the same true for 2SAT? We do

not know. There are polynomial time
algorithms for 2SAT, so if you found
a reduction to 2SAT, you would prove
P = NP. The algorithm works by
viewing every clause (x ∨ y) as an
implication ¬x ⇒ y as well as the
implication ¬y ⇒ x. This defines a
directed graph where all the vertices
correspond to variables and their
negations, and the edges correspond
to implications. You can show that the
formula is satisfiable if and only if there
is no path that leads from a variable to
its negation.

Theorem 8. 3SAT is NP-complete.

Proof 3SAT ∈ NP is easy enough to check. The witness is a sat-
isfying assignment to the formula. The verifier simply evaluates the
formula on the given witness, and outputs the results of the evalua-
tion.

Since we have already shown that CKT− SAT is NP-hard, it will
be enough to show that CKT− SAT ≤P SAT.

Given a circuit, we shall output a CNF formula that is satisfiable if
and only if the circuit accepts some input. Introduce a new variable
yg for each internal gate g of the circuit. If the internal gate g has
inputs h, q, let Fg be the CNF formula on variables yg, yh, yq that is 1
if and only if yg = g(yq, yh). By Lemma 7, this formula is a 3-CNF of
constant size. If the output gate is v, the final formula is

yv ∧
∧
g

Fg,

which is satisfied if and only if the circuit has a satisfying assign-
ment.

Every clause of this formula has at most 3 variables. To make sure
it has exactly 3 variables, we replace each clause with less than 3 vari-
ables with a 3-CNF that by adding dummy variables. For example,
we can replace yv by a 3-CNF on the variables yv, z1, z2 that computes
the same function as yv:

(yv ∨ z1 ∨ z2) ∧ (yv ∨ ¬z1 ∨ z2) ∧ (yv ∨ ¬z1 ∨ ¬z2) ∧ (yv ∨ z1 ∨ ¬z2).


	Polynomial time Reductions
	NP-complete problems
	 3SAT 

