CSE431: Complexity Theory

April 26, 2024

Midterm

Anup Rao

Due: May 3, 2024

For each of the following assertions:

- (3 points) State whether they are True, False, or Unknown to the best of your knowledge of complexity theory.
- (2 points) Briefly justify your answer.
- 1. (25 points, 5 each)
 - (a) $\mathbf{P} \neq \mathbf{NP}$.
 - (b) There is a function $f: \{0,1\}^* \to \{0,1\}$ that cannot be computed by any Turing machine.
 - (c) For every n, there is a function $f: \{0,1\}^n \to \{0,1\}$ that cannot be computed by any boolean circuit.
 - (d) For *n* large enough, it holds that there is a function $f : \{0,1\}^n \to \{0,1\}$ that can be computed by a circuit of size $2^{\sqrt{n}}$, but cannot be computed by a circuit of size n^2 .
 - (e) If $\mathbf{P} \neq \mathbf{NP}$, and *n* is large enough, then any algorithm for solving the independent set problem must take time at least 2^n on graphs with *n* vertices.
- 2. (25 points, 5 each)
 - (a) Given the code of a Turing machine α and an input x, there is a machine $M(\alpha, x)$ that outputs 1 if the machine corresponding to α halts on input x within $2^{|x|}$ steps, and outputs 0 otherwise.
 - (b) Every function $f: \{0,1\}^n \to \{0,1\}$ can be computed by a circuit of size $O(2^n/n^2)$.
 - (c) If there is a deterministic logspace algorithm to check whether or not two vertices in a directed graph are connected, then $\mathbf{L} = \mathbf{NL}$.
 - (d) There is a non-deterministic logspace algorithm that takes as input directed graph, a vertex s and a number k, and either aborts, or outputs all the vertices at distance k from s in the graph.
 - (e) There is an algorithm that can take an undirected graph and two vertices s, t as input and output whether or not there is a path between s and t in $O(\log^2 n)$ space.
- 3. (25 points, 5 each)
 - (a) **PSPACE** \subseteq **EXP**.
 - (b) $coNL \neq PSPACE$.
 - (c) The problem of determining whether or not a graph can be colored with 5 colors is **NP**-complete.
 - (d) There is an algorithm for 3SAT that takes n^2 time.

- (e) Every function $f : \{0,1\}^* \to \{0,1\}$ that is computed by a Turing machine can also be computed by a polynomial sized family of circuits.
- 4. (20 points) A 2CNF formula is a formula of the type $(x \lor y) \land (\neg x \lor z) \land \ldots$ In other words, each clause contains 2 variables. The function $2SAT(\phi)$ takes a 2CNF as input, and outputs 1 if ϕ is satisfiable. Otherwise it outputs 0. Every clause of the form $(x \lor y)$ in ϕ can be thought of as asserting the statement $\neg x \Rightarrow y$ (i.e. if x is not true then y is true). Thus the formula defines a directed graph, where the vertices are variables or their negations, and every clause in the formula gives an edge of the graph.
 - (a) Show that the formula is satisfiable if and only if there is no variable x such that there is a path from x to $\neg x$ and a path from $\neg x$ to x in the graph.
 - (b) Prove that 2SAT is in NL.