Randomized Algorithms

e Algorithms that make random choices during the
computation

e QOften faster, simpler than traditional algorithms

Miller-Rabin primality test

Input: 7-bit number x.
Goal: decide whether x is a prime number or not.

- Extremely important problem: many applications in cryptography.
 There is a deterministic polynomial time algorithm (AKS-2000),

running time is O(n'?)

The test (running time O(n?)):

1. Express x — 1 = 2° - d, where d is odd.

2. Picka € {1,2,...,x — 1} uniformly at random.

3.lf forsomet=1,2,....s, a’4=1 mod X, yet a2 %= — 1 mod x, conclude
that x is not prime. Otherwise conclude that x is prime.

Theorem: If x is prime, the test concludes that x is prime with probability 1. If x is
not prime, the test concludes not prime with probability at least 3/4.

Min-Cut

Input: An undirected graph.
Goal: Partition the vertices of the graph in two sets A, B, to minimize the number

of edges going from A to B.

* You can use flows and cuts, but there is a simpler randomized
algorithm

Karger’s Algorithm:
1. In each step, pick a uniformly random edge and contract it.

2. Stop when you have just two vertices.
3. Output the corresponding cut.

Xv-3p-ND
o b

Karger’s Algorithm:

1. In each step, pick a uniformly random edge and contract it.
2. Stop when you have just two vertices.

3. Output the corresponding cut.

Xv-3p-ND
g

Thm: The algorithm finds the min-cut with probability at least 2/(n(n — 1)).
Pf:

- Suppose the min-cut cuts k edges.

- Then every vertex must degree > k, or else that vertex would already give a
smaller min-cut.

- So, the number of edges in the graph is at least nk/2.
* The probability we pick one of the edges of the min-cut is at most

ki(nk/2) =2/n.

» The probability that an edge of the min-cut is never picked is at least
(1-2/n)1-2/(n—1))...(1 =2/3)
=((n—-2)/n)- (n-3)/(n—-1))-(n—4)/(n—-2))... =2/(n(n—1)).

Karger’s Algorithm:
1. In each step, pick a uniformly random edge and contract it.

2. Stop when you have just two vertices.
3. Output the corresponding cut.

Xv-3p-ND
g

Final algorithm: Repeat the above algorithm 100n(n — 1) times. Output the best
cut that you find.

Graph coloring

Input: An undirected graph.
Goal: Find a 3-coloring of vertices that maximizes the number of edges that get 2

colors.

Algorithm:
Randomly color the vertices of the graph red,blue,green.

Thm: The expected number of vertices that are properly colored is at least 2m/3.
Pf: For each edge ¢, define X, = 1 if the edge e gets two colors, and X, = 0
otherwise.

E[X,] =Pr[X,=1]-1=2/3.

So, by linearity of expectation,

E[) X,]=) E[X]=2m/3.

No known poly time algorithm achieves > 2m/3.

Dominating set

Input: An undirected graph, every vertex has degree > A.

Goal: Find a small set of vertices S such that every vertex is eitherin S oris a
neighbor of S.

Algorithm:

1. Randomly include each vertex in the set X, with probability p.

2. Let Y be the set vertices not in X and not a neighbor of X.
3. Output XU Y.

Claim: The expected size of X U Yis at most pn + n(1 — p)!*2 < pn + e PU+2)p,

Setp =1In(1 + A)/(1 + A), to get expected size at most n(1 + In(1 + A))/(1 + A).
Pf of Claim:

1. The expected size of X is pn.

2. For each vertex, the probability that it is included in Y is at most (1 — p)”A.
3. So the expected size of Yis n(1 — p)'+2.

Matrix product checking in
O(n?) time.

Input: # X n matrices A, B, C
Goal: Check that AB = C

Algorithm:
1. Pick x € {0,1}" uniformly at random.
2. Check ABx = Cx

Claim: If AB # C, then Pr[ABx = Cx]| < 1/2.

Pf of Claim:

Let D = (AB — C)

Suppose D, ; # 0, then (Dx); = 2 D, x = D, jix; + Z D; ;. x;, so for every fixing
k

k#j
of Z D; . x;, the probability that (Dx); = O is at most 1/2.

k#j

