
Randomized Algorithms

• Algorithms that make random choices during the 
computation


• Often faster, simpler than traditional algorithms



Miller-Rabin primality test
Input: -bit number .

Goal: decide whether  is a prime number or not. 

n x
x

• Extremely important problem: many applications in cryptography.

• There is a deterministic polynomial time algorithm (AKS-2000), 

running time is  O(n12)

The test (running time ):

1. Express , where  is odd.

2. Pick  uniformly at random.

3. If for some , , yet , conclude 

that  is not prime. Otherwise conclude that  is prime.

O(n2)
x − 1 = 2s ⋅ d d

a ∈ {1,2,…, x − 1}
t = 1,2,…, s a2t⋅d = 1 mod x a2t−1⋅d ≠ − 1 mod x

x x

Theorem: If  is prime, the test concludes that  is prime with probability 1. If  is 
not prime, the test concludes not prime with probability at least 3/4.

x x x



Min-Cut
Input: An undirected graph.

Goal: Partition the vertices of the graph in two sets , to minimize the number 
of edges going from  to .

A, B
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• You can use flows and cuts, but there is a simpler randomized 
algorithm

Karger’s Algorithm: 
1. In each step, pick a uniformly random edge and contract it.

2. Stop when you have just two vertices.

3. Output the corresponding cut.



Karger’s Algorithm: 
1. In each step, pick a uniformly random edge and contract it.

2. Stop when you have just two vertices.

3. Output the corresponding cut.

Thm: The algorithm finds the min-cut with probability at least . 
Pf:  

• Suppose the min-cut cuts  edges.

• Then every vertex must degree , or else that vertex would already give a 

smaller min-cut.

• So, the number of edges in the graph is at least .

• The probability we pick one of the edges of the min-cut is at most 



• The probability that an edge of the min-cut is never picked is at least 

 
 

2/(n(n − 1))

k
≥ k

nk /2

k /(nk /2) = 2/n .

(1 − 2/n)(1 − 2/(n − 1))…(1 − 2/3)
= ((n − 2)/n) ⋅ ((n − 3)/(n − 1)) ⋅ ((n − 4)/(n − 2))… = 2/(n(n − 1)) .



Karger’s Algorithm: 
1. In each step, pick a uniformly random edge and contract it.

2. Stop when you have just two vertices.

3. Output the corresponding cut.

Final algorithm: Repeat the above algorithm  times. Output the best 
cut that you find.

100n(n − 1)



Graph coloring
Input: An undirected graph.

Goal: Find a 3-coloring of vertices that maximizes the number of edges that get 2 
colors. 

Algorithm: 
Randomly color the vertices of the graph red,blue,green.

Thm: The expected number of vertices that are properly colored is at least .

Pf: For each edge , define  if the edge  gets two colors, and  
otherwise.


.

So, by linearity of expectation,


2m /3
e Xe = 1 e Xe = 0

𝔼[Xe] = Pr[Xe = 1] ⋅ 1 = 2/3

𝔼[∑
e

Xe] = ∑
e

𝔼[Xe] = 2m /3.

No known poly time algorithm achieves .> 2m /3



Dominating set
Input: An undirected graph, every vertex has degree .

Goal: Find a small set of vertices  such that every vertex is either in  or is a 
neighbor of .
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Algorithm: 
1. Randomly include each vertex in the set , with probability .

2. Let  be the set vertices not in  and not a neighbor of .

3. Output .

X p
Y X X

X ∪ Y

Claim: The expected size of  is at most .

Set , to get expected size at most .

X ∪ Y pn + n(1 − p)1+Δ ≤ pn + e−p(1+Δ)n
p = ln(1 + Δ)/(1 + Δ) n(1 + ln(1 + Δ))/(1 + Δ)

Pf of Claim: 
1. The expected size of  is .

2. For each vertex, the probability that it is included in  is at most .

3. So the expected size of  is .

X pn
Y (1 − p)1+Δ

Y n(1 − p)1+Δ



Matrix product checking in 
 time.O(n2)

Input:  matrices 

Goal: Check that 

n × n A, B, C
AB = C

Algorithm: 
1. Pick  uniformly at random.

2. Check 

x ∈ {0,1}n

ABx = Cx

Claim: If , then .AB ≠ C Pr[ABx = Cx] ≤ 1/2

Pf of Claim: 
Let  
Suppose , then , so for every fixing 

of , the probability that  is at most .

D = (AB − C)
Di,j ≠ 0 (Dx)i = ∑

k

Di,kxk = Di,jxj + ∑
k≠j

Di,kxk

∑
k≠j

Di,kxk (Dx)i = 0 1/2


