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Abstract

A two player game is played by cooperating players who are not allowed to communicate. A
referee asks the players questions sampled from some known distribution and decides whether
they win or not based on a known predicate of the questions and the players’ answers. The
parallel repetition of the game is the game in which the referee samples n independent pairs of
questions and sends the corresponding questions to the players simultaneously. If the players
cannot win the original game with probability better than (1− ǫ), what’s the best they can do
in the repeated game?

We improve earlier results of [Raz98] and [Hol07], who showed that the players cannot win

all copies in the repeated game with probability better than (1−ǫ/2)Ω(nǫ2/c) (here c is the length
of the answers in the game), in the following ways:

• We show that the probability of winning all copies is (1− ǫ/2)Ω(ǫn) as long as the game is
a “projection game”, the type of game most commonly used in hardness of approximation
results.

• We prove a concentration bound for parallel repetition (of general games) showing that
for any constant 0 < δ < ǫ, the probability that the players win a (1 − ǫ + δ) fraction of
the games in the parallel repetition is at most exp

(

−Ωǫ(δ
3n/c)

)

(here the constant may
depend on ǫ). Our result has applications to testing Bell Inequalities, since it implies that
the parallel repetition of the CHSH game can be used to get an experiment that has a
very large classical versus quantum gap.

Our first bound is independent of the answer length and has a better dependence on ǫ. By
the recent work of Raz [Raz08], this bound is tight. Our bound gives a generic way to improve
the soundness of a Probabilistically Checkable Proof (PCP), in a way that is independent of
the answer length of the PCP. Using it, for every k, one can convert any q query PCP with
answer length c, size sc and soundness (1 − ǫ) into a 2 query PCP with answer length ck, size
O(ck(2s)k) and soundness (1− ǫ/2q)Ω(ǫk/q).

Another consequence of our bound is that the Unique Games Conjecture of Khot [Kho02]
can now be shown to be equivalent to the following a priori weaker conjecture:

Unique Games Conjecture There is an unbounded increasing function f : R+ → R
+

such that for every ǫ > 0, there exists an alphabet sizeM(ǫ) for which it is NP-hard to distinguish
a Unique Game with alphabet size M in which a 1−ǫ2 fraction of the constraints can be satisfied
from one in which a 1− ǫf(1/ǫ) fraction of the constraints can be satisfied.

∗Supported by the National Science Foundation under agreement No. CCR-0324906.
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1 Introduction

We study two player games (G) defined by a publicly known distribution on questions (X,Y ) and
a publicly known predicate V . A referee administers the game by sampling two questions (x, y)
and revealing a question to each of the players. The players respond with answers (a(x), b(y)). The
game is won if and only if the predicate V (x, y, a, b) is satisfied. The players are not allowed to
communicate during the game. The value of the game, usually denoted by (1− ǫ) in this paper, is
the maximum probability of success that the players can achieve.

Any one round two prover interactive proof (as introduced by [BGKW88]) can be viewed as
such a two player game between the verifier and the two players. This proof system turns out to be
powerful enough to capture all of non-deterministic exponential time (NEXP), with an exponentially
small error. Such games also arise in cryptographic applications [BGKW88, BGKW89, DFK+92,
LS95], hardness of approximation results [FGL+91, ALM+98, FL92, LY93], and have been used to
prove direct product theorems for communication complexity [PRW97].

Given any game G, the n-fold parallel repetition of the game Gn is the game in which the
referee samples n independent questions (X1, Y1), . . . , (Xn, Yn), each distributed according to the
distribution of G, and sends all the x questions to the first player and all the y questions to the
second player. The players then each respond with n answers that are functions of all the questions
that each receives, and the referee decides that they win if and only if they win in each of the n
coordinates. For each player, the i’th answer may depend on the question asked in some other
coordinate. Can we bound the value of Gn in terms of the value of G?

1.1 Earlier Work

The first bound on the value of Gn obtained by Verbitsky [Ver94], who showed that it must tend
to 0 as n tends to infinity. This was followed by a much stronger bound due to Raz, involving the
answer length, of the game. The answer length is c if the set of possible answers that the players
may give is bounded by 2c.

Theorem 1 (Raz [Raz98]). There is a universal constant α > 0 such that for every game G with

value 1− ǫ, the value of Gn is at most (1− ǫ/2)αǫ
32n/c.

The dependence on the answer length c was shown to be almost optimal by Feige and Verbitsky
[FV02]. Raz’s proof was subsequently strengthened and simplified by Holenstein:

Theorem 2 (Holenstein [Hol07]). There is a universal constant α > 0 such that for every game G
with value 1− ǫ, the value of Gn is at most (1− ǫ/2)αǫ

2n/c.

We note that (1 − ǫ/2) in the above expression can actually be replaced by (1 − ǫβ) for any
constant β < 1. In addition to our own results, this paper contains a proof of Theorem 2.

1.2 The Connection to Probabilistically Checkable Proofs and Hardness of Ap-

proximation

A projection game is a game in which the predicate V has a special kind of structure — every pair
(x, y) defines a function fxy and the predicate V is satisfied only when fxy(b) = a. We note that
the definition for projection games we use in this paper is slightly weaker than the one typically
used, since we allow Vxy(a, b) to be false even when fxy(b) = a. This weaker form is useful for the
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discussion below. If the game is such that fxy is a permutation for every xy, then the game is called
a unique game.

Both projection and unique games have played an important role in the study of approximation
algorithms. Most hardness of approximation results are proved by showing that if one can given
an algorithm for the hard problem under study, than this algorithm can be used to solve the Label

Cover problem. An instance of this problem is a bipartite graph and a predicate Vxy associated
with every edge xy in the graph. The problem is to estimate

max
a,b

Pr
edge (x, y)

[V (x, y, a(x), b(y))],

where here the maximum is taken over all functions a, b mapping the vertices to elements of the
answer set, and the probability is over a uniformly random edge from the graph.

Every such instance L is associated with a two player game GL in the natural way: the distribu-
tion on questions is the one induced by picking a uniformly random edge, and the predicate is the
same as in the instance. The problem of finding the optimal a, b for L is the same as the problem
of finding the best strategy for the game GL. Similarly, the parallel repetition of the game Gn

L is
associated with another instance of Label Cover Ln, where again the value of Gn

L is the maximum
fraction of edges of Ln that can be satisfied by any labeling. Further, the property of being a unique
or projection game is preserved under parallel repetition.

The above games have played a key role in the development of Probabilistically Checkable
Proofs (PCPs). The PCP theorem of Arora et al. [AS98, ALM+98] shows that there exists a
constant ǫ0 > 0 and a constant alphabet size 2c, for which we can construct a 2-query PCP with
completeness 1 and soundness 1 − ǫ0. Given any q query PCP, define the Label Cover instance
where every left vertex corresponds to a particular q-tuple of questions that can be asked by the
verifier. A valid label for the vertex is a q-tuple of answers for the corresponding questions. Every
right vertex corresponds to a single query to the PCP, with valid labels being single answers. xy
is an edge in the graph if and only if y corresponds to a single question from the q-tuple of x. The
corresponding constraint is satisfied if and only if the q-tuple of answers would satisfy the verifier,
and the label of y is consistent with the corresponding label of x. If the proof is valid, then every
constraint can be satisfied. Any assignment to the Label Cover problem gives a PCP proof just
by taking the answers to the vertices on the right, and any PCP proof gives an assignment to the
Label Cover instance in the natural way. It turns out that if the best assignment to the Label Cover
instance satisfies a (1 − ǫ) fraction of the edges, and the best proof in the PCP has a probability
of success of 1− γ, then qǫ ≥ γ ≥ ǫ. This shows that any q-query PCP with size s and soundness
1−ǫ can be converted into a 2-query projection PCP (a projection PCP is a PCP where the verifier
accepts only when a projection constraint is satisfied) of size s+ sq with soundness 1− γ/q.

Thus the results of Arora et al. can be viewed as proving that there is a constant ǫ0 > 0 such
that given any language in NP, the instances of this problem can be converted to instances of Label
Cover in polynomial time, so that the Label Cover instance has value 1 if the input instance belongs
to the language, else it has value at most 1 − ǫ0. Thus an algorithm that can distinguish Label
Cover instances with value 1 from instances with value 1− ǫ0 can be used to solve all problems in
NP.

Parallel repetition theorems for projection games can then be used to improve the above result.
We can take the instance L obtained from the discussion above and encode it as the parallel
repetition Ln. If L has value 1, then Ln clearly still has value 1. On the other hand, if L has value
at most 1− ǫ0, by the parallel repetition theorem, n can be chosen to be large enough so that Ln
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has value at most ǫ. So any algorithm that can distinguish Label Cover instances with value 1 from
instances with value ǫ can be used to distinguish instances with value 1 from instances with value
1− ǫ0 and so can be used to solve every problem in NP.

There is a simple algorithm to check if a Unique Games instance has value 1 or not — cycle over
all choices for an assignment to a single vertex v in the graph and check that the induced unique
assignment to the rest of the connected component satisfies all constraints, and repeat this for all
connected components1. Still, we may hope that the following conjecture (due to Khot [Kho02]) is
true:

Conjecture 3 (Unique Games Conjecture). For every ǫ, there exists an answer length c(ǫ) for

which it is NP-hard to distinguish instances of Unique Games with answer length c that have value

at least 1− ǫ from instances that have value at most ǫ.

Several tight or almost tight hardness results have been proved assuming the Unique Games
Conjecture, including for Max 2-Lin [Kho02], Vertex Cover [KR03], Max-Cut [Kho02, KKMO04,
MOO05], Approximate Coloring [DMR06], Sparsest Cut [CKK+06, KV05] and Max 2-Sat [Aus07].
Thus the question of whether or not the conjecture is true is of considerable interest. On the
other hand, approximation algorithms [Tre05, CMM06, CMM06, GT06] have been designed to
approximate the value of a Unique Game. For example, given a unique games instance with value
1−ǫ, an algorithm due to Charikar, Makarychev and Makarychev [CMM06] can find an assignment
with value 1−O(

√
ǫc). This implies that the answer length c(ǫ) in the Unique Games Conjecture

must be larger than Ω(1/ǫ) if the conjecture is to hold and P is different from NP.
We might have hoped that we could use the parallel repetition thereoms of Raz or Holenstein

to reduce the task of proving the conjecture to the task of proving it for a much smaller gap, just as
we did above for the case of Label Cover, and then try and prove the conjecture for that small gap.
However, the bounds of Raz and Holenstein are problematic for this purpose. If ǫ > δ and we try to
apply Holenstein’s theorem to increase the gap between the 1− δ instances and the 1− ǫ instances,
n repetitions maps these instances to ones with value (1− δ)n and (1− ǫ3)αn/c respectively, which
is a big gap only if δ ≪ αǫ3/c. A conjecture with this kind of gap cannot hold, since the algorithm
of Charikar et al. shows that if δ, ǫ, c satisfy this constraint, we can distinguish (1 − δ) instances
from (1− ǫ) instances in polynomial time.

1.3 Parallel Repetition and Bell Inequalities

Two player games also show up in the context of testing so called Bell Inequalities [Bel64] to confirm
the existence of quantum entanglement. The idea is to consider games where two players who have
access to entangled qubits can achieve a much higher success probability than two classical players
can. Perhaps the most famous example of a game where such a gap exists is the CHSH game
[CHSH69]. Here the verifier sends the players random bits (x, y) and receives one bit answers
(a(x), b(y)). The players win when a⊕ b = x∧ y. Two classical players cannot win with probability
better than 0.75, but it can be shown that two players sharing entangled qubits can win with
probability close to 0.85.

For the purpose of testing Bell Inequalities, it is important to be able to come up with games
that have a big gap between the success probability of classical players and the success probability

1We need to cycle over assignments since our definition of a Unique Game allows for a constraint to be unsatisfied

even if the corresponding bijection is satisfied.
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of entangled players, and this seems to be an issue that has warranted a significant amount of effort
[BCH+02, Gil03].

This motivates proving a concentration bound for parallel repetition. If we could prove that
two players cannot hope to win more than the expected fraction of games in the parallel repetition,
we would get a simple way to construct games with a large quantum vs classical gap. We can
take the CHSH game (any game with a small classical vs quantum gap would work) and consider
its n-fold parallel repetition. We say that the players win the repeated game as long as they win
in 0.8 fraction of the coordinates. The concentration bound would imply that if the players were
classical, they can win this game with a very small probability. On the other hand, the Chernoff
bound shows that the obvious quantum strategy (play each game in the repetition independently)
is sure to win the game with all but exponentially small probability.

1.4 Our Results

• We prove an essentially tight bound on the value of the parallel repetition in the case that
the original game is a projection game.

Theorem 4 (Parallel Repetition in Projection Games). There is a universal constant α > 0
such that if G is a projection game with value at most 1 − ǫ, the value of Gn is at most

(1− ǫ/2)αǫn.

This improves on the earlier bounds in two ways: the dependence on ǫ is better, and the
bound is independent of the answer length. As we discussed in the introduction, the work of
Raz [Raz08] shows that our bound is tight up to the constant α.

Every unique game is also a projection game, so this theorem can be used to amplify the gap
between unique games instances. We obtain the the Unique Games Conjecture is actually
equivalent to the following (a priori weaker) conjecture:

Conjecture 5 (Unique Games Conjecture Restated). There exists an unbounded increasing

function f : R+ → R
+ such that for every ǫ > 0, there is an answer length c(ǫ) for which it is

NP-hard to distinguish instances of unique games with answer length c that have value 1− ǫ2

from instances that have value 1− ǫf(1/ǫ).

We sketch the proof of this equivalence in Section 7.

As discussed in the introduction, every q-query PCP P of size s with soundness 1− ǫ can be
converted into a 2-query projection PCP whose soundness can then be amplified to get a new
2-query PCP Pn. Theorem 4 gives a bound for the soundness of the resulting 2-query PCP
as described in the following corollary:

Corollary 6 (Soundness Reduction for General PCPs). There is a universal constant α > 0
such that if P is a q-query PCP of size sc with alphabet length c, completeness 1 − β and

soundness 1 − ǫ, then Pn is a 2-query PCP of size c(sn + sqn) with alphabet length cqn,
completeness (1− β)n and soundness (1− ǫ/2q)αǫn/q.

• We prove a concentration bound for parallel repetition:

5



Theorem 7 (Concentration in General Games). There is a universal constant α > 0 such

that for every game G with value 1− ǫ and answer set size 2c and every δ > 0, the probability

that the players can win more than a 1 − ǫ + δ fraction of the games in the n-fold parallel

repetition is bounded by

2

(

1− δ/2

1− ǫ+ 3δ/4

)r

,

where r = αδ2n
c−log(1−ǫ+δ/4) .

This theorem shows that the parallel repetition of the CHSH game gives a game with a large
classical vs quantum gap.

1.5 Techniques

Our proofs build on the work of Raz and Holenstein. In this section we shall be vague (and slightly
inaccurate) in order to convey what is new about our work without revealing too many technical
details.

Fix a strategy for Gn. We use the notation Xn = X1, . . . ,Xn and Y n = Y1, . . . , Yn to denote the
questions that are asked to the players in Gn. It turns out that the heart of all the earlier proofs
(and our own) is a lemma of the following type:

Informal Lemma 8. Let S ⊂ [n] be any set of small size k and WS denote the event that the

players win the games corresponding to the coordinates in S. Then, if Pr[WS ] is large enough there

exists an index i /∈ S such that the probability that the players win the i’th coordinate conditioned

on WS is at most 1− ǫ/2.

Here we need Pr[WS ] to be larger than some function of ǫ, n, k and the answer length c. Once
we have this kind of lemma, it is not too hard to show that the players cannot win Gn with a high
probability, and we leave this to the formal parts of the paper.

The lemma is proved via a reduction — we can show that if the lemma is false, i.e. if there
exists a small set S and a dense event WS for which the lemma is false, we can find a strategy
for G that wins with probability larger than 1 − ǫ, which is a contradiction. Suppose there exists
such a set S for which WS is dense. Then the players decide on an index i ahead of time. When
asked the questions (X,Y ), the players place these questions in the i’th coordinate and use shared
randomness to generate n − 1 other pairs of questions (Xj , Yj) such the joint distribution of the
questions they end up with is ǫ/2 close to

(

XnY n
∣

∣WS

)

in statistical distance. Since the lemma is
assumed to be false, the players can then use the i’th coordinate answers dictated by the strategy
for Gn to win G with probability more than 1− ǫ.

The questions are actually generated in two steps. In the first step, the players simultaneously

sample two random variables R,A, i.e. they end up with the same sample for these random variables
with high probability. The random variable A is just the answers of the first player in the coordinates
in S. The random variable R contains at least one question from every pair (Xj , Yj), and both
questions from the pairs corresponding to the coordinates in S. These properties allow us to argue
that for every r, a,

(

XnY n
∣

∣(R,A) = (r, a) ∧WS

)

is a product distribution. This means that once
the players have agreed on the sample for R,A, they can use independent randomness to sample
the rest of the questions conditioned on the information they have, and end up with a distribution
on questions that is close to

(

XnY n
∣

∣WS

)

.

6



It turns out that Pr[WS ∧ A = a|R = r] needs to be large enough for typical fixings of R = r
for this argument to go through. Raz and Holenstein argue that this quantity is large, just by
counting. They argue that if the answer length is c bits, Pr[WS ∧ (R,A) = (r, a)]/Pr[WS ∧R = r]
is typically at least 2−ck, since there are at most 2ck possible ways to set the random variable A
if the answer length is c. In our work, we get a stronger bound by observing that in the case of a
projection game, the players cannot be using all of their answers equally often.

For simplicity, let us assume that the game is unique. Then note that for every fixing of
R = r, the bijection between the answers of the players in the coordinates of S is determined, but
the answers are now two independent random variables. It is not too hard to show that if two
independent random variables satisfy some bijection with probability γ, there must exist a set of
size 100/γ such that the probability that the bijection is satisfied and the first random variable
does not land in this set is less than γ/100 (simply take the the set to be the elements of weight at
least γ/100). The argument also works in the case that the constraints are projections instead of
bijections.

So we can argue that for every fixing of R = r, there is a small set of heavy answers that the
players must be using. This argument lets us get a lowerbound on Pr[WS ∧ (R,A) = (r, a)] that is
independent of the answer length.

To prove the concentration bound, we first observe that the lemma above can be generalized
slightly in the following way:

Informal Lemma 9. Let S ⊂ [n] be any set of small size k and E be any event that is determined

by what happens in the games of S. Then, if Pr[E] is large enough, most indices i /∈ S are such

that the probability that the players win the i’th coordinate conditioned on E is at most 1− ǫ/2.

Once we have this lemma, we can show that if the referee samples a small fraction of the coordi-
nates uniformly at random and checks that the players have won in those coordinates, his count of
how many games the players have won in the random sample behaves like a supermartingale; con-
ditioned on the result of his sampling so far, the outcome at the next random coordinate is biased
towards losing. This allows us to bound the probability that the referee sees a larger fraction of
wins than he should. On the other hand, the Chernoff bound gives that with high probability, the
referee’s experiment gives a good estimate for the fraction of games that the players won. These
arguments allow us to bound the probability that the players win a large fraction of the games.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, capital letters to denote random variables and small
letters to denote instantiations of random variables/elements of sets. We shall use the same letter
to denote objects of this type that are related to each other. For example, we shall use X to denote
a random variable taking values in the set X and x to denote an instantiation of that random
variable.

In this paper we shall often need to start with some probability space and modify it in certain
ways. We explain our notation with the help of some examples. If A,B,C are random variables in
some probability space taking values in A,B, C, then:
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• A′B′C ′
def
= {A} {B} {C} defines a new probability space in which A′, B′, C ′ take values in

A,B, C such that

Pr[A′ = a ∧B′ = b ∧C ′ = c]
def
= Pr[A = a] Pr[B = b] Pr[C = c]

• A′B′C ′
def
= {AB} {C} means

Pr[A′ = a ∧B′ = b ∧ C ′ = c]
def
= Pr[A = a ∧B = b] Pr[C = c]

• A′B′C ′
def
= {AB}

{

C
∣

∣B
}

means

Pr[A′ = a ∧B′ = b ∧ C ′ = c]
def
= Pr[A = a ∧B = b] Pr[C = c|B = b]

• Let Ã be a random variable taking values in supp(A). Then A′, B′
def
=
{

Ã
}{

B
∣

∣Ã
}

means

Pr[A′ = a ∧B′ = b]
def
= Pr[Ã = a] Pr[B = b|A = a]

2.2 Statistical Distance

Sometimes the distributions we get are not exactly the distributions we want, but they may be
close enough. The measure of closeness we will use is this one:

Definition 10. Let D and F be two random variables taking values in a set S. Their statistical
distance is

|D − F | def= max
T ⊆S

(|Pr[D ∈ T ]− Pr[F ∈ T ]|) = 1

2

∑

s∈S

|Pr[D = s]− Pr[F = s]|

If |D − F | ≤ ǫ we shall say that D is ǫ-close to F . We shall also use the notation D
ǫ≈ F to mean

D is ǫ-close to F .

Proposition 11 (Triangle Inequality). Let A,B,C be random variables over S, with A
ǫ1≈ B

ǫ2≈ C.

Then A
ǫ1+ǫ2≈ C.

Proposition 12 (Conditioning Close Distributions). Let A,B,A′, B′ be random variables such that

|A−A′| = 0. Then for every a,
∣

∣B|A = a−B′|A′ = a
∣

∣ ≤
∣

∣AB −A′B′
∣

∣/Pr[A = a].

Proposition 13. Let A,A′ be two random variables over A in the same probability space such that

Pr[A 6= A′] ≤ ǫ. Then |A−A′| ≤ ǫ.

Proof. Let S ⊂ A be any set. Then by the union bound we get Pr[A ∈ S] ≤ Pr[A′ ∈ S]+Pr[A 6= A′],
which clearly implies the proposition.

Proposition 14 (Maintaining Independence). Let X,Y be independent random variables and E
be an event that depends only on Y . Then XY |E are independent random variables.
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2.3 Games

In this paper, a game is defined by a distribution (X,Y ) on a set of questions, X×Y, a set of possible
answers A× B and a predicate V : X × Y × A× B. A strategy for the game is a pair of functions
a : X → A and b : Y → B. The value of the game is the maximum of PrX,Y [V (X,Y, a(X), b(Y )],
over all choices of strategies a(·), b(·).

We call a game a projection game if there exists a family of functions fx,y indexed by X × Y
such that V (x, y, a, b) is equivalent to fx,y(b) = a.

A game is called unique if it is a projection game with the additional property that all functions
fx,y are bijections.

The answer length of a game is the quantity log |A|+ log |B|.
Given a game Gn the parallel repetition of the game is the game with distribution on questions

obtained by taking n independent samples (X1, Y1) · · · (Xn, Yn). A strategy for the new game is
specified by two functions a : X n → An and b : Yn → Bn. When the game is played, the referee
samples n independent pairs of questions as above and sends one question from each pair to each of
the players. The players respond with n answers each. The referee then checks that the players win
by checking the AND of the predicate in the original game in each of the n copies. Thus the value
of the game is the maximum of Pr[V (X1, Y1, a1(X1), b1(Y1))∧· · ·∧V (Xn, Yn, an(Xn), bn(Yn))], over
all choices of strategies a(·), b(·).

3 Main Theorems

In this section, we prove our main theorems, assuming two lemmas which we prove in a later section.
Fix an optimal strategy for the repeated game. For any set S ⊂ [n], we let WS denote the event
that the players win all the games in coordinates included in the set S.

Lemma 15 (Main Lemma for General Games). Let G be a game with value at most 1 − ǫ, such
that one player gives answers from a set of size 2c. Let S ⊂ [n] be a set of coordinates and γ > 0
be such that Pr[WS ] ≥ 2−γ

2(n−|S|)+|S|c. Then for i chosen uniformly from outside S, we have that

Ei/∈S

[

Pr[W{i}|WS ]
]

≤ 1− ǫ+ 25γ.

The lemma says that as long as the probability of winning in S is not too small already, then
then there is an index i /∈ S such that the probability of winning in S ∪ {i} is even smaller. Let
S1 = {1}, and let Sj = Sj−1 ∪ ij be chosen by picking the element ij /∈ Sj−1 that minimizes WSj .
We shall use the lemma to show that the probability of winning in the set Sk (for large k) must
be small. The idea is that either the probability in winning Sk−1 is already extremely small, or we
can use Lemma 17 to show that the probability of winning in Sk is significantly smaller than the
probability of winning in Sk−1 and proceed inductively.

Formally, let t(γ, n, c, ǫ) be such that

2−γ
2(n−t)+tc = (1− ǫ+ 25γ)t (1)

It is a computation to show that the unique t satisfying this equation is

t =
γ2n

c+ γ2 − log(1− ǫ+ 25γ)

We can then use Lemma 15 to prove:
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Lemma 16. For every γ > 0, and k ≤ ⌈t⌉, Pr[WSk
] ≤ max{2−γ2(n−t)+tc, (1 − ǫ+ 25γ)k}.

Theorem 2 follows from Lemma 16 by setting γ = ǫ/50 and setting k = ⌈t⌉. For this setting of
parameters, Lemma 16 and Equation 1 give that

Pr[W[n]] ≤ Pr[WSk
] ≤ (1− ǫ/2)t = (1− ǫ/2)

γ2n

c+γ2−log(1−ǫ/2)

Since − log(1− ǫ/2) ≤ 1, this quantity is at most (1− ǫ/2)αǫ
2n/c for some constant α.

Proof of Lemma 16. We prove the lemma by induction on k. For k = 1, Pr[WS1 ] ≤ (1 − ǫ) ≤
(1− ǫ+25γ), so the bound holds. For general k, we have that Pr[WSk

] = Pr[Wik |WSk−1
] Pr[WSk−1

].

If Pr[WSk−1
] ≤ 2−γ

2(n−t)+tc, we are done since Pr[WSk
] ≤ Pr[WSk−1

]. Otherwise by induction it

must be the case that 2−γ
2(n−t)+tc < Pr[WSk−1

] ≤ (1− ǫ+ 25γ)k−1.

Since Pr[WSk−1
] ≥ 2−γ

2(n−t)+tc ≥ 2−γ
2(n−(k−1))+(k−1)c, we apply Lemma 15 to show that there

must exist i /∈ Sk−1 for which Pr[W{i}|WSk−1
] ≤ (1− ǫ+ 25γ). Thus

Pr[WSk
] ≤ Pr[W{i}|WSk−1

] Pr[WSk−1
] ≤ (1− ǫ+ 25γ)k .

For projection games, we shall prove a lemma that is independent of the alphabet length c:

Lemma 17 (Main Lemma for Projection Games). Let S ⊂ [n] be a set, β > 0 be a num-

ber and G be a projection game such that n − |S| ≥ log(1/5β2)
2β2 and Pr[WS ] ≥ 2−β

2(n−|S|). Then

Ei/∈S

[

Pr[W{i}|WS ]
]

≤ 1− ǫ+ 75β.

The lemma can then be used to prove Theorem 4. Set t(γ, n, ǫ) so that

2−β
2(n−t) = (1− ǫ+ 75β)t (2)

It is a computation to show that

t =
β2n

β2 − log(1− ǫ+ 75β)

Lemma 18. In a projection game, for every β > 0, and k ≤ ⌈t⌉, if n ≥ t + log(1/5β2)
2β2 , then

Pr[WSk
] ≤ max{2−β2(n−t)+tc, (1− ǫ+ 75β)k}.

Theorem 4 follows from Lemma 18 by setting β = ǫ/150 and setting k = ⌈t⌉. For this setting

of parameters, if n ≥ t+ log(1/5β2)
2β2 , Lemma 18 and Equation 2 give that

Pr[W[n]] ≤ Pr[WSk
] ≤ (1− ǫ/2)t = (1− ǫ/2)

β2n

β2−log(1−ǫ/2)

Since − log(1 − ǫ/2) = O(ǫ), this quantity is at most (1 − ǫ/2)αǫn for some constant α. Further,
if Theorem 4 is true for large n, then it must hold for every n:2 if the value of Gn is larger
than (1 − ǫ/2)αǫn, then for every r, the players can win the game Gnr with probability at least
(1− ǫ/2)αǫnr, just by playing the same strategy independently on each block of n games. Thus, we
get a contradiction for large enough r.

2This argument was suggested by an anonymous referee.
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Proof of Lemma 18. The proof is almost identical to the proof of Lemma 16. We prove the lemma
by induction on k. For k = 1, Pr[WS1 ] ≤ (1 − ǫ) ≤ (1 − ǫ+ 75β), so the bound holds. For general
k, we have that Pr[WSk

] = Pr[Wik |WSk−1
] Pr[WSk−1

]. If Pr[WSk−1
] ≤ 2−β

2(n−t), we are done since

Pr[WSk
] ≤ Pr[WSk−1

]. Otherwise by induction it must be the case that 2−β
2(n−t) < Pr[WSk−1

] ≤
(1− ǫ+ 75β)k−1.

Since Pr[WSk−1
] ≥ 2−β

2(n−t) ≥ 2−β
2(n−(k−1)), and n− (k − 1) ≥ n− t ≥ log(1/5β2)

2β2 we can apply

Lemma 17 to show that there must exist i /∈ Sk−1 for which Pr[W{i}|WSk−1
] ≤ (1− ǫ+75β). Thus

Pr[WSk
] ≤ Pr[W{i}|WSk−1

] Pr[WSk−1
] ≤ (1− ǫ+ 75β)k .

4 Sampling From Close Distributions

A variant of the following lemma was proved by Holenstein [Hol07]. The proof we sketch here is
due to Boaz Barak.

Lemma 19 (Sampling similar distributions [Hol07]). There exists a protocol for l non-communicating

players such that given distributions A1, . . . , Al taking values in A such that |Al−Ai| ≤ ǫi for every
i ∈ [l], the players can use shared randomness to sample B1, . . . , Bl with the property that:

• For every i, Bi has the same distribution as Ai.

• For every i ≤ l − 1, Pr[Bl 6= Bi] ≤ 2ǫi.

• Pr[all samples are the same] ≥ 1− 2
∑l−1

i=1 ǫi

Proof Sketch: First note that the last guarantee follows from the second guarantee and the union
bound.

To prove the first two guarantees, let us first consider the case that the Ai’s are promised to be
uniform over (possibly different) subsets of A. In this case the protocol for the players is simple:
the shared randomness is interpreted as a permutation of the universe A. Each player then samples
the first element of the permutation that lies in the support of her distribution. The lemma is then
easily seen to be true.

To handle the general case, identify each distribution Ai with the uniform distribution on the
set ∪a∈A{a} × [0,Pr[A′i = a]], which is a subset of A× [0, 1]. Then by tiling the set A× [0, 1] with
a fine enough grid, we can interpret the shared randomness as a permutation of the parts of this
grid to get a protocol that is arbitrarily close to getting the bounds promised above.

5 Conditioning Product Distributions

Fact 20. Let A,B be random variables in some probability space. Let A′ be another random variable

such that |A−A′| ≤ ǫ. Then
∣

∣{AB} − {A′}
{

B
∣

∣A′
}∣

∣ ≤ ǫ.

We need a basic definition:

11



Definition 21 (Informational Divergence). Given two random variables U, V taking values in the

same set U , we define the informational divergence

D
(

U
∣

∣

∣

∣V
) def
=
∑

u∈U

Pr[U = u] log

(

Pr[U = u]

Pr[V = u]

)

where we adopt the convention that 0 log 0 = 0 log 0
0 = 0. If there exists a u ∈ U for which

Pr[V = u] = 0 but Pr[U = u] 6= 0, we say that that D
(

U
∣

∣

∣

∣V
)

= ∞.

The following are standard facts about informational divergence:

Fact 22. D
(

V
∣

∣

∣

∣U
)

≥ |U − V |2

Fact 23. If V is a random variable, E is any event and Ṽ
def
= V |E, in the same space with

Pr[E] = 2−d, then D

(

Ṽ
∣

∣

∣

∣V
)

≤ d.

Proof. We have D
(

Ṽ
∣

∣

∣

∣V
)

=
∑

v∈V Pr[V = v|E] log

(

Pr[V=v|E]
Pr[V=v]

)

. However, for every v,

Pr[V = v|E]

Pr[V = v]
≤ 1

Pr[E]
≤ 2d

Thus D
(

Ṽ
∣

∣

∣

∣V
)

≤∑v∈V Pr[V = v|E]d ≤ d.

Fact 24. If U1, . . . , Un are independent random variables and V1, . . . , Vn are other random variables,

n
∑

i=1

D
(

Vi

∣

∣

∣

∣Ui

)

≤ D
(

V1 . . . Vn

∣

∣

∣

∣U1 . . . Un

)

A key part of the proof will be showing that if we condition a product distribution on an event
whose probability is not too low, there must be some coordinate which remains distributed how it
was before the conditioning.

Lemma 25 ([Raz98]). Let U1, U2, . . . , Un be independent random variables. Suppose E is any event

in the same probability space such that Pr[E] = 2−d, then

E
i∈[n]

[∣

∣{Ui} −
{

Ui

∣

∣E
}∣

∣

]

≤
√

d

n

Proof.

E
i∈[n]

[∣

∣{Ui} −
{

Ui

∣

∣E
}∣

∣

]2

≤ E
i∈[n]

[

∣

∣{Ui} −
{

Ui

∣

∣E
}∣

∣

2
]

by convexity of the square function

≤ E
i∈[n]

[

D
({

Ui

∣

∣E
} ∣

∣

∣

∣ {Ui}
)]

by Fact 22

≤ 1

n
D
((

U1U2 . . . Un

∣

∣E
) ∣

∣

∣

∣U1 . . . Un

)

by Fact 24

≤ d

n
by Fact 23
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Next, we show that all of the above still holds if in addition to dense event, we condition on
the value of some random variable with small support, and the variables are only independent in
convex combination:

Corollary 26. Let R,U1, U2, . . . , Un, A be random variables and E be an event with Pr[E] = 2−d

such that

• For every r, U1, . . . , Un are independent conditioned on the event R = r.

• For every r, |supp
(

A
∣

∣E ∧ (R = r)
)

| ≤ 2h

Then,

E
i∈[n]

[∣

∣

{

RA
∣

∣E
}{

Ui

∣

∣R
}

−
{

RAUi

∣

∣E
}∣

∣

]

≤
√

d+ h

n

Proof.

E
i∈[n]

[∣

∣

{

RA
∣

∣E
} {

Ui

∣

∣R
}

−
{

RAUi

∣

∣E
}∣

∣

]2

= E
i∈[n]

(a,r)←(AR|E)

[∣

∣

{

Ui

∣

∣R = r
}

−
{

Ui

∣

∣E ∧ (A,R) = (a, r)
}∣

∣

]2

≤ E
(a,r)←(AR|E)

[

E
i∈[n]

[∣

∣

{

Ui

∣

∣R = r
}

−
{

Ui

∣

∣E ∧ (A,R) = (a, r)
}∣

∣

]2

]

by convexity

≤ E
(a,r)←(AR|E)

[

log(1/Pr[E ∧A = a|R = r])

n

]

by Lemma 25

≤ (1/n) log



 E
r←(R|E)





∑

a∈supp(A|E∧R=r)

Pr[A = a|E ∧ (R = r)]

Pr[E ∧A = a|R = r]







 by concavity of log

= (1/n) log



 E
r←(R|E)





∑

a∈supp(A|E∧R=r)

Pr[R = r]

Pr[E ∧R = r]









≤ (1/n) log

(

2h E
r←(R|E)

[

Pr[R = r]

Pr[E ∧R = r]

]

)

= (1/n) log

(

2h E
r←(R|E)

[

Pr[R = r]

Pr[E] Pr[R = r|E]

]

)

= (1/n) log

(

2h
∑

r∈R

Pr[R = r] Pr[R = r|E]

Pr[E] Pr[R = r|E]

)

= (1/n) log
(

2h/Pr[E]
)

=
d+ h

n

13



Finally, we need the following Corollary to carry out the proof for the case of projection games:

Corollary 27. Let R,U1, U2, . . . , Un, A be random variables and E be an event. Suppose that for

every r, U1, . . . , Un are independent conditioned on the event R = r. Let H ⊂ supp(R) × supp(A)
be a set such that for every r, |{a|(r, a) ∈ H}| ≤ 2h, and Pr[H ∧ E] ≥ 2−d. Then,

E
i∈[n]

[∣

∣

{

RA
∣

∣E
} {

Ui

∣

∣R
}

−
{

RAUi

∣

∣E
}∣

∣

]

≤
√

Pr[H|E]
d+ h

n
+ (1− Pr[H|E])

Proof. We can separate the expectation into the part where H occurs and the part where it does
not.

E
i∈[n]

[∣

∣

{

RA
∣

∣E
}{

Ui

∣

∣R
}

−
{

RAUi

∣

∣E
}∣

∣

]2

= E
i∈[n]

(a,r)←(AR|E)

[∣

∣

{

Ui

∣

∣R = r
}

−
{

Ui

∣

∣E ∧ (A,R) = (a, r)
}∣

∣

]2

≤ E
i∈[n]

[

Pr[H|E] E
(a,r)←(AR|E∧H)

[∣

∣

{

Ui

∣

∣R = r
}

−
{

Ui

∣

∣E ∧ (A,R) = (a, r)
}∣

∣

]

+ (1− Pr[H|E])

]2

≤ Pr[H|E] E
i∈[n]

[

E
(a,r)←(AR|E∧H)

[∣

∣

{

Ui

∣

∣R = r
}

−
{

Ui

∣

∣E ∧ (A,R) = (a, r)
}∣

∣

]

]2

+ (1− Pr[H|E])

where the last inequality is by convexity. By Corollary 26, we get that first term in this expectation
is bounded by d+h

n . This gives us the final bound.

6 Proof of Main Lemmas

In this section, we shall prove Lemma 15 and Lemma 17.
These lemmas say that as long the probability of winning in the k coordinates in S is not too

small, then on average, the players must be doing pretty badly on the remaining coordinates even
conditioned on winning in WS.

Without loss of generality, we assume that S = {n − k + 1, n − k, . . . , n}. We shall prove
these lemmas by contradiction. Fix a strategy for Gn. Suppose for the sake of contradiction that
Pr[WS ] is high and Ei/∈S

[

Pr[W{i}|WS ]
]

> 1 − ǫ/2. Then we shall use the players strategy for Gn

to get an extremely good strategy for G, one that wins with probability more than 1− ǫ, and thus
contradicting the bound on the value of G.

6.1 Intuition for the proof

We first outline a natural way to use a strategy for Gn to get a strategy for G, which we shall
ultimately refine to complete the proof: the players decide on an index i such that given questions
(X,Y ) in G, they can use shared randomness to generate n − 1 pairs of questions such that when
the questions (X,Y ) are placed in the i’th coordinate, and the rest of the questions are placed
in the appropriate coordinates, the resulting distribution is statistically close to the distribution
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(X1, Y1) . . . (Xn, Yn)|WS . If the players can find such an index i, then they could just use the
strategy of the players for Gn to win G in the i’th coordinate with probability more than 1− ǫ.

There are a couple of obstacles to getting this approach to work. The most immediately apparent
obstacle is that it must be true that there exists an index i for which (Xi, Yi)|WS is statistically
close to (X,Y ). This obstacle can easily be circumvented via Lemma 25. A more subtle issue is
that the players have to generate the rest of the questions without communicating. Dealing with
this issue will take up most of our effort in the proof. To understand under what circumstances it
is possible for two players to generate questions that satisfy the above properties, let us first look
at some simple cases. Below, let Xn denote (X1, . . . ,Xn) and Y n denote (Y1, . . . , Yn).

Independent Distributions. Suppose every (x, y) ∈ (X ,Y) was such that
(

XnY n
∣

∣WS ∧ (Xi = x)
)

and
(

XnY n
∣

∣WS ∧ (Yi = y)
)

are both product distributions. Then given the questions (x, y), the
first player can sample

(

Xn
∣

∣WS ∧ (Xi = x)
)

and the second player can independently sample
(

Y n
∣

∣WS ∧ (Yi = y)
)

. It is then easy to see that if X,Y was statistically close to (Xi, Yi)|WS (which
we can guarantee using Lemma 25), the players do sample questions which are statistically close to
XnY n|WS . Of course the assumption that we have such independence is unreasonable. In general,
the first player’s questions are not independent of the second players questions. Even if the game
was such that (X,Y ) is a product distribution, conditioning on WS could potentially introduce
complicated dependencies between the questions of the players.

Completely correlated distributions. Next suppose we could somehow prove that there exists
some random variable R and functions f, g such that for every x ∈ X , y ∈ Y:

• Learning R would allow both players to generate the random variables they want using their
inputs

(f(R,x), g(R, y)) ≈
(

XnY n
∣

∣WS ∧ (Xi = x) ∧ (Yi = y)
)

• Although R may depend on (Xi, Yi), all the information needed to generate R is contained
in any one of these variables:

(

R
∣

∣WS ∧ (Xi = x)
)

≈
(

R
∣

∣WS ∧ (Yi = y)
)

≈
(

R
∣

∣WS ∧ (Xi = x) ∧ (Yi = y)
)

Given these conditions, it is easy to design a protocol for the players — each player computes
the distribution for R based on his question and they then use Lemma 19 to agree on a sample
for
(

R
∣

∣WS ∧ (Xi = x) ∧ (Yi = y)
)

. The lemma and the second condition above guarantee that the
distribution they end up with will be statistically close to the right one. Once they have generated
the sample for R, they simply apply the functions f, g to generate their corresponding questions.

The solution for the general case will be a mixture of the solutions in the above two cases. We
shall identify an index i and a random variable R such that:

• Fixing R = r will determine at least one question of (Xi, Yi) for every coordinate i. If A
denotes the answers of one of the players in the coordinates n − k + 1, . . . , n, this condi-
tion guarantees that for every r, a, x, y, Xn, Y n are independent conditioned on the event
(R,A,Xi) = (r, a, x) ∧ WS . Similarly Xn, Y n are independent conditioned on the event
(R,A, Yi) = (r, a, y) ∧WS.
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• Conditioned on WS , all the information needed to generate RA given (Xi, Yi) is contained in
any one of these variables:

{

XiYi

∣

∣WS

} {

RA
∣

∣Xi ∧WS

}

≈
{

XiYiRA
∣

∣WS

}

≈
{

XiYi

∣

∣WS

}{

RA
∣

∣Yi ∧WS

}

Once we are able to determine such R,A and prove the above properties, we shall be done.
On receiving the questions x, y, the players will use the protocols from Lemma 19 to generate
(

RA
∣

∣(Xi, Yi) = (x, y) ∧WS

)

. Once they have sampled this random variable, they can generate the
rest of their questions independently. This would prove that Pr[W{i}|WS ] must be small.

The stronger results that apply to projection games in this paper come about by proving that
in these kinds of games, the only way the player can win is by using a strategy that restricts itself
to using a few possible answers. We can define a new sub-event of WS that ensures that not only
do the players win in the coordinates of S, they do so by using answers that have a relatively high
probability. We can show that this event has an extremely high density in WS , so that conditioning
on WS is essentially the same as conditioning on this event. This allows us to carry out the proof
as if the effective answer size of the provers is much smaller than it actually is.

6.2 The proof

Let A = An−k+1 . . . An and B = Bn−k+1 . . . Bn denote the answers of the players in the last k
games. Let V = V1, V2, . . . , Vn−k denote uniformly random bits.

For i = 1, 2, . . . , n− k, let Ti denote a random question in every coordinate:

Ti
def
=

{

Xi if Vi = 1,

Yi if Vi = 0.

Let Ui’s denote the opposite questions:

Ui
def
=

{

Xi if Vi = 0,

Yi if Vi = 1.

Set Q
def
= Xn−k+1Xn−k+2 . . . XnYn−k+1Yn−k+2 . . . Yn — the questions in the last k games.

Set R
def
= V QT1T2 . . . Tn−k — the “won” questions and a random question from each of the

remaining question pairs.

Set R−j
def
= V1V2 . . . Vj−1Vj+1 . . . Vn−kQT1T2 . . . Tj−1Tj+1 . . . Tn−k — removing the j’th coordi-

nate from R.
The most technical part of the proof is the following lemma:

Lemma 28. Let E be any event that is determined by ABR and let H ⊂ supp(R)× supp(A) be a

set determining the event (R,A) ∈ H. Let h, γ > 0 be such that

• For every r, |{a|H}| ≤ 2h

• Pr[E ∧H] ≥ 2−γ
2(n−k)+h.

• Pr[H|E] ≥ 1− γ2.
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Then Ei/∈S

[

Pr[W{i}|E]
]

≤ 1− ǫ+ 25γ.

Before proving this lemma, let us first see how we can use it to prove Lemma 15 and Lemma 17.

Proof of Lemma 15. Set E = WS and H = supp(R)× supp(A) to be all points. It is clear that E is
determined by QAB which is contained in ABR. If the game is such that each answer comes from
a set of size 2c, |supp(A|R = r)| is trivially bounded by 2kc. Set h = kc and apply Lemma 28 to
get Lemma 15.

Next we give the proof for the case of projection games.

Proof of Lemma 17. Recall that in a projection game, we have the condition that there is some
function fQ, determined by the questions Q such that WS implies that fQ(B) = A.

For any tuple (a, r) ∈ (A,R), say that (a, r) is heavy if Pr[A = a|R = r] ≥ 2−h, where h is a
parameter that we shall fix later. The intuition behind this definition is that conditioned on R = r,
the answers A,B|R = r are independent. Thus the players should be able to win the projection
game with a decent probability only when they pick one of the heavy elements, and there cannot
be too many of those. For instance, imagine that f was the identity function. Then it is easy to
check that if A,B are independent and Pr[A = B] is θ, there must be a set of size O(1/θ) (namely
the elements with weight at least θ/100) which A lands in with high probability.

Let H denote the event that (A,R) is heavy. The first condition in Lemma 28 is trivially
satisfied. We shall argue that when the players win, they usually win inside the event H. Note
that for every r, A,B|R = r is a product distribution.

Pr[WS ∧Hc] ≤
∑

(b,r) s.t. (fq(b),r) is not heavy

Pr[R = r,B = b] Pr[A = fq(b)|R = r] ≤ 2−h

Set h = 3β2(n − k). Then the above equation implies that:

Pr[H ∧WS ] = Pr[H|WS ] Pr[WS ] ≥ Pr[WS ]− 2−h

≥ 2−β
2(n−k) − 2−3β

2(n−k)

= 2−2β
2(n−k)(2β

2(n−k) − 2−β
2(n−k))

≥ 2−2β
2(n−k)

= 2−5β
2(n−k)+h

Set E = WS. Note that E is determined by ABR. Observe that for every i, Pr[W{i}|WS ] ≤
Pr[W{i}|H ∧WS] Pr[H|WS ] + 2−h/Pr[WS ].

Next observe that

Pr[H|WS ] =
Pr[H ∧WS ]

Pr[WS ]
=

Pr[WS ]− Pr[WS ∧Hc]

Pr[WS ]
≥ 1− 2−h/Pr[WS ]

This last quantity is bounded by 1− 2−3β
2(n−k)+β2(n−k) ≥ 1− 5β2 by the assumption on n− k.

Applying Lemma 28 with γ =
√
5β ≤ 3β, we get that

E
i/∈S

[

Pr[W{i}|WS ]
]

≤ 1− ǫ+ 75β
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Finally, we prove Lemma 28.

Proof of Lemma 28. We shall first show that in expectation over a random choice of the index i,
if the players use the protocol from Lemma 19 to generate AR−i|E assuming that their questions
came from the distribution XiYi|E, then with high probability they sample the same value for this
variable which implies that the distribution they sample is close to

{XiYi}
{

AR−i
∣

∣EXiYi

}

≈
{

XiYi

∣

∣E
} {

AR−i
∣

∣EXiYi

}

Then we shall argue that if the players complete the rest of the questions they need indepen-
dently, the joint distribution of questions they get is close to XnY n|E.

We shall use the following shorthand to simplify notation: an expression like Fi
γ≈Ei/∈S

Gi stands
for the statement Ei/∈S [|Fi −Gi|] ≤ γ.

Claim 29.
{

XiYi

∣

∣E
} γ≈Ei/∈S

{XiYi} =Ei/∈S
{XY }

Proof. The claim follows by Lemma 25 applied to the event E and the product distribution of the
questions. Note that Pr[E] ≥ Pr[E ∧H] ≥ 2−γ

2(n−k)+h ≥ 2−γ
2(n−k).

E
i/∈S

[∣

∣

{

XiYi

∣

∣E
}

− {XiYi}
∣

∣

]

≤
√

γ2(n− k)

n− k
= γ

We apply Corollary 27 to get that:

E
i/∈S

[∣

∣

{

AR
∣

∣E
} {

Ui

∣

∣R
}

−
{

ARUi

∣

∣E
}∣

∣

]

≤
√

Pr[H|E]
γ2(n− k)− h+ h

n− k
+ 1− Pr[H|E]

≤
√

2γ2 ≤ 2γ

Note that for every i,
{

AR
∣

∣E
}{

Ui

∣

∣R
}

=
{

AR
∣

∣E
} {

Ui

∣

∣TiVi

}

, since Ui is independent of all the
other random variables in R. Also, we have that for every i, Vi is a uniformly random bit in both
distributions. Thus, we can conditioning on Vi = 0 and apply Proposition 12 to get

{

ARUi

∣

∣E
} 2γ≈Ei/∈S

{

AR
∣

∣E
}{

Ui

∣

∣TiVi

}

⇒
{

AR−iYiXi

∣

∣E
} 4γ≈Ei/∈S

{

AR−iYi

∣

∣E
}{

Xi

∣

∣Yi

}

(3)

We can then argue that

{XiYi}
{

AR−i
∣

∣YiXiE
}

γ≈Ei/∈S

{

XiYi

∣

∣E
} {

AR−i
∣

∣YiXiE
}

by Claim 29

=Ei/∈S

{

AR−iXiYi

∣

∣E
}

rearranging

4γ≈Ei/∈S

{

AR−iYi

∣

∣E
} {

Xi

∣

∣Yi

}

by Equation 3

=Ei/∈S

{

Yi

∣

∣E
}{

Xi

∣

∣Yi

}{

AR−i
∣

∣YiE
}

rearranging
γ≈Ei/∈S

{Yi}
{

Xi

∣

∣Yi

}{

AR−i
∣

∣YiE
}

by Claim 29

=Ei/∈S
{XiYi}

{

AR−i
∣

∣YiE
}

rearranging

Repeating the argument but conditioning on Vi = 1, we get
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Claim 30. {XiYi}
{

AR−i
∣

∣XiE
} 6γ≈Ei/∈S

{XiYi}
{

AR−i
∣

∣XiYiE
} 6γ≈Ei/∈S

{XiYi}
{

AR−i
∣

∣YiE
}

At this point we have made a lot of progress. We have shown that each player has roughly the
same information about the random variable AR−i, even in the event E. We imagine that we run
the protocol promised by Lemma 19 using the two players in our game, plus an additional player
who gets access to both questions (x, y). All players generate AR−i conditioned on E and whatever
questions they have. Then by Lemma 19 we get a protocol which has the effect that

• player 1’s variables have the distribution {Xi}
{

AR−i
∣

∣XiE
}

• player 2’s variables have the distribution {Yi}
{

AR−i
∣

∣YiE
}

• player 3’s variables have the distribution {XiYi}
{

AR−i
∣

∣XiYiE
}

• Ei/∈S [Pr[the players have inconsistent variables when they use the index i]] ≤ 2(6γ)+2(6γ) =
24γ

This means that the joint distribution that the first two players get is 24γ-close to the distribu-
tion of the third player. But this third player samples from a distribution that is close to the one
we want:

E
i/∈S

[∣

∣{XiYi}
{

AR−i
∣

∣XiYiE
}

−
{

XiYiAR
−i
∣

∣E
}∣

∣

]

≤ E
i/∈S

[∣

∣{XiYi} −
{

XiYi

∣

∣E
}∣

∣

]

≤ γ by Claim 29

For an average i, the first two players sample from a distribution that is 25γ close to the correct
distribution.

Each of the players then sample the rest of her questions conditioned on the questions and
answers that she knows. To end the proof, observe that for every i, x, y, a, r−i,

|
(

Xn
∣

∣(Xi, R
−i, A) = (x, r−i, a) ∧ E

)

−
(

Xn
∣

∣(Xi, Yi, R
−i, A) = (x, y, r−i, a) ∧ E

)

| = 0

and

|
(

Y n
∣

∣(Yi, R
−i, A) = (y, r−i, a) ∧ E

)

−
(

Y n
∣

∣(Xi, Yi, R
−i, A) = (x, y, r−i, a) ∧ E

)

| = 0

This is because after fixing i, x, a, r−i, Xn is independent of Y n. After this fixing, E depends only
on Y n. Thus, by Proposition 14 Xn, Y n remain independent even after conditioning on the event
E. In particular, Xn is independent of Yi, proving the first statement above. The second equation
follows similarly: after fixing i, y, a, r−i, Xn is independent of Y n and they remain independent
even after conditioning on the event E. Thus Y n is independent of Xi in this space.

We have argued that the players can generate a distribution that is 25γ close to XnY n|E. This
gives us our final bound:

1− ǫ ≥ E
i/∈S

[

Pr[W{i}|E]
]

− 25γ
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7 Consequences for Unique Games

It is clear that Conjecture 3 implies Conjecture 5. To prove the converse, we show that if Conjec-
ture 3 is false, then so is Conjecture 5. Suppose that there is some γ such that for every constant
c, there is a polynomial time algorithm that can distinguish Unique Games instances with value
(1− γ) from those with value γ. Without loss of generality, we may assume that f(1/ǫ) < ǫ−0.9 by
decreasing the value of f at every point at which it violates this condition.

Given a unique games instance G, we can run the algorithm on G1/f(1/ǫ)ǫ2 . We show how to
set ǫ to be small enough so that if the original game had value (1 − ǫ2), the new game must have
a value of at least 1 − γ, and if the original game had a value of (1 − ǫf(1/ǫ)), the new game
must a value less than γ. In the first case, the value of G1/f(1/ǫ)ǫ2 is at least (1 − ǫ2)1/f(1/ǫ)ǫ

2
.

Since limǫ→0(1− ǫ2)1/f(1/ǫ)ǫ
2
= 1, for small enough ǫ, this is at least (1− γ). In the second case, by

Theorem 4, the value of G1/f(1/ǫ)ǫ2 is at most (1−ǫf(1/ǫ)/2)α/ǫ =
(

(1− ǫf(1/ǫ)/2)2/ǫf(1/ǫ)
)αf(1/ǫ)/2

.

Since limx→0(1− x)1/x = 1/e, and ǫf(1/ǫ) ≤ ǫ0.1, we have that

lim
ǫ→0

(

(1− ǫf(1/ǫ)/2)2/ǫf(1/ǫ)
)αf(1/ǫ)/2

= 0,

and we can set ǫ to be small enough so that this quantity is bounded by γ. Thus, the algorithm
contradicting Conjecture 3 can be used to get a new algorithm that distinguishes games with value
(1− ǫ2) from games with value (1− ǫf(1/ǫ)), contradicting Conjecture 5.

8 The Concentration Bound

In this section we prove Theorem 7.
Here we made no effort to optimize the constants appearing in the bound. It is conceivable

that these can be improved significantly. In analogy with the the results from the earlier section,
the bounds can easily be improved in the case of projection games to remove the dependence on c.
Here we present an alternate, simpler proof of our original result suggested to us by an anonymous
referee.

Set t(γ, n, c, ǫ) such that

2−γ
2(n−t)+tc = (1− ǫ+ 25γ)t (4)

It is a computation to show that the unique t satisfying the constraint is

t =
γ2n

c+ γ2 − log(1− ǫ+ 25γ)

Fix a strategy for the two players. Define a distribution on sets as following. Let i1, i2, . . . , ik
denote a sequence of random distinct elements of [n]. For each j = 1, . . . , ⌈t⌉, let Sj denote the union
of the first j elements. Recall that WS denotes the event that the players win in the coordinates
included in the set S.

We start by proving the following lemma:

Lemma 31. For every γ > 0, Pr[WS⌈t⌉
] ≤ 2(1 − ǫ+ 25γ)t.
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Proof. For each j = 1, . . . , ⌈t⌉, let Lj denote the event determined by Sj that Pr[WSj ] ≤ (1 − ǫ+
25γ)t, and Hj denote the complement event. Then Pr[WS⌈t⌉

] = Pr[WS⌈t⌉
∧L⌈t⌉] + Pr[WS⌈t⌉

∧H⌈t⌉].

The first term is bounded by Pr[WS⌈t⌉
|L⌈t⌉] ≤ (1 − ǫ + 25γ)t by definition. To bound the second

term,

Pr[WS⌈t⌉
∧H⌈t⌉] =

⌈t⌉
∏

j=1

Pr[WSj ∧Hj|WSj−1 ∧Hj−1]

By Lemma 15, the j’th term in this product is bounded by Pr[WSj |WSj−1 ∧Hj−1] ≤ (1− ǫ+25γ).
Thus, Pr[WS⌈t⌉

] ≤ 2(1− ǫ+ 25γ)t.

We set γ = δ/100. For this setting of parameters, we have that Pr[WS⌈t⌉
] ≤ 2(1 − ǫ+ δ/4)⌈t⌉.

Now we use an argument implicit in the work of Schmidt et al. [SSS95]:
Let Z be the random variable that denotes the number of games that are won. Then whenever

Z ≥ (1 − ǫ + δ)n, let us pick a random subset S of size ⌈t⌉ from the set of coordinates where the
players won, and blame this set for this bad event. Then the probability that we blame any fixed

set S is at most Pr[WS ]
(⌈(1−ǫ+δ)n⌉

⌈t⌉

)−1
. Thus, by the union bound,

Pr[Z ≥ (1− ǫ+ δ)n] ≤
∑

S

Pr[WS ]

(⌈(1 − ǫ+ δ)n⌉
⌈t⌉

)−1

This quantity is at most

(

n

⌈t⌉

)

(1− ǫ+ δ/4)⌈t⌉
(⌈(1− ǫ+ δ)n⌉

⌈t⌉

)−1

by Lemma 31. Simplifying, we get that

Pr[Z ≥ (1− ǫ+ δ)n] ≤ (1− ǫ+ δ/4)⌈t⌉
(

n

(1− ǫ+ δ)n − ⌈t⌉+ 1

)⌈t⌉

≤ 2

(

n(1− ǫ+ δ/4)

(1− ǫ+ δ)n − ⌈t⌉+ 1

)⌈t⌉

≤ 2

(

n(1− ǫ+ δ/4)

(1− ǫ+ δ)n − t

)⌈t⌉

≤ 2

(

1− ǫ+ δ/4

1− ǫ+ 3δ/4

)⌈t⌉

Where for the last inequality we used the fact that t/n ≤ (δ/100)2 ≤ δ/4. Thus,

Pr[Z ≥ (1− ǫ+ δ)n] ≤ 2

(

1− ǫ+ δ/4

1− ǫ+ 3δ/4

)⌈t⌉

=

(

1− δ/2

1− ǫ+ 3δ/4

)⌈t⌉

Finally, we observe that ⌈t⌉ ≥ r (as in the statement of the theorem), for a small enough
constant α.
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